
149

Instead of specifying the expiry time for a cookie in seconds, you
can specify an exact date when you want the cookie to expire. This is
useful for a cookie that you do not want to expire for a long period of time.
To create a cookie that uses an exact date for the expiry time, you can use
the header function to send the cookie to the client as an HTTP header.

Example:
header("Set-Cookie: accessedBefore=Yes; expires=Friday, 07-Mar-2003 00:00:00 GMT;");

To prevent unauthorized pages from reading a cookie you placed
on a user's computer, you can specify a path and domain for the
cookie in the setcookie function. Only the pages stored in the
specified directory and domain will be able to read the cookie.

Example:
setcookie("accessedBefore", "Yes", time() + 3600, "/web/text", "www.test.com");

If a PHP page attempts to access a variable that does not exist, an
error will be generated. You may want to use the isset function
to verify that a cookie variable exists before attempting to access
the variable in a PHP page.

Example:
if (isset($cookieValue))
{

print "A cookie exists on your computer";
}

148

PHP

CREATE A COOKIE

⁄ To create a cookie, type setcookie().

¤ Between the parentheses, type
a name for the cookie enclosed in
quotation marks. Then type a comma
followed by the value you want to
assign to the cookie enclosed in
quotation marks.

‹ To specify when
the cookie will
expire, type a comma
followed by time().

› Type + followed
by the expiry time
for the cookie in
seconds.

ˇ Display the PHP page
in a Web browser.

� The cookie is now stored
on the computer.

READ A COOKIE

⁄ In the PHP page, type $
followed by the name of the
cookie you want to read.

¤ Type the code that
uses the value of the
cookie.

‹ Display the PHP page
in a Web browser.

� The Web browser
displays the result of
reading a cookie.

P HP pages can be used to create and read cookies.
When a user accesses a page that creates a cookie,
the cookie is typically stored as a small text file on

the user's computer. The cookie can later be read by a PHP
page to access the information stored in the cookie. For
example, a cookie can store a user's name. When the user
accesses the PHP page again later, the page can use the
value stored in the cookie to display the user's name.

To create a cookie, you use the setcookie function.
The function takes several arguments, including the name
you want to assign to the cookie, the value you want the
cookie to store and an expiry time for the cookie. The
setcookie function must be placed before any other
code on a PHP page.

By default, a cookie will be deleted when the user closes
their Web browser. Setting an expiry time for a cookie

allows the cookie to store information for longer periods
of time. The time function can be used to set the expiry
time, in seconds, for a cookie.

After creating a cookie, you can have a PHP page read
the cookie. When a user with a cookie stored on their
computer visits a PHP page that can read the cookie, PHP
automatically converts the name of the cookie to a variable
and assigns the value stored in the cookie to the variable.
This makes it easy to work with cookies using PHP. To read
a cookie stored on a user's computer, you simply access
the cookie variable by prefixing the name of the cookie
with a dollar sign ($).

When working with cookies, keep in mind that a client
may be configured to reject cookies or may be located
behind a security firewall that filters out cookie
information.

CREATE AND READ A COOKIE

MANAGING COOKIES AND SESSIONS 7

151

� The cookie has been
deleted from the computer.

If you want to make changes to a cookie you have previously
created, you must delete the cookie and then recreate the
cookie using the new information. The process of deleting
and then recreating a cookie differs depending on the version
of PHP you are using.

PHP Version 4

When using PHP version 4, cookies you create
and delete using the setcookie function are
processed in the order they appear in the PHP
script. To delete and then recreate a cookie,
you must place the setcookie statement
that deletes the cookie before the setcookie
statement that recreates the cookie.

Example:
setcookie("status", "", time() - 60);
setcookie("status", "approved", time() + 3600);

PHP Version 3

When using PHP version 3, cookies you
create and delete using the setcookie
function are processed in reverse order. To
delete and then recreate a cookie, you must
place the setcookie statement that recreates
the cookie before the setcookie statement
that deletes the cookie.

Example:
setcookie("status", "approved", time() + 3600);
setcookie("status", "", time() - 60);

ˇ If you specified a path
for the cookie when the
cookie was created, type
a comma and then type
the path enclosed in
quotation marks.

Á If you specified a domain
for the cookie when the
cookie was created, type
a comma and then type
the domain enclosed in
quotation marks.

‡ Display the PHP page
in a Web browser.

150

PHP

DELETE A COOKIE

⁄ To delete a cookie,
type setcookie().

¤ Between the
parentheses, type the
name of the cookie you
want to delete enclosed
in quotation marks.

‹ Type a comma and
then type "" to enter an
empty string for the value
of the cookie.

› To specify an expiry
time in the past, type a
comma and then type
time() - followed by a
number of seconds.

P HP allows you to delete a cookie before it expires.
This is useful if you no longer need the information
in the cookie. For example, you may want to delete

a cookie that contains user registration information if the
user cancels their registration to your Web site.

It may also be necessary to remove cookies if you already
have the maximum number of cookies allowed, but want
to create more. PHP permits each domain to store up to
20 cookies. You can delete cookies you no longer need
to make room for new cookies.

To remove a cookie, you use the setcookie function to
create a new cookie that has the same name as the cookie
you want to remove, but has an expiry time set as a time
in the past. For example, you can use the time function
to set the expiry time as a negative number of seconds,
such as time() - 60. This will cause the cookie to expire
immediately. The setcookie function must be placed
before any other code on a PHP page.

When deleting a cookie, the value you assign to the
cookie can be an empty string. If you specified a path and
domain when you created the original cookie, you must
specify the same path and domain when deleting the
cookie. This ensures that the correct cookie is removed.
For information about specifying a path and domain for
a cookie, see the top of page 148.

Working with cookies is not always a simple task. Some
Web servers and Web browsers work with cookies in
different ways. For example, some Web servers will not
allow a cookie to be removed from a client computer until
the cookie reaches its original expiry time. When working
with cookies, you should thoroughly test your code on
all Web browsers you expect to access your PHP page.

DELETE A COOKIE

MANAGING COOKIES AND SESSIONS 7

153

PHP typically stores session information in
a directory on the Web server. The name
and location of this directory is specified
by the session.save_path value in the
php.ini configuration file. You should check
to make sure the directory exists before
starting a session. If the directory does not
exist, you can create it. For example, if the
php.ini configuration file specifies /tmp as
the session.save_path value, you can
create a directory named tmp in the main
directory on the Web server.

You can use the session_id function to specify
a different value for a session ID. This is useful
when you want to create unique session IDs that
you can use as identifiers in your code. The session
ID must be enclosed in quotation marks and placed
within the parentheses following the session_id
function. You should use only alphanumeric
characters when specifying a session ID.

Example:
session_id("User593204");

You can change the name of the cookie used
to store the session ID number by changing
PHPSESSID in the session.name value
in the php.ini configuration file on the Web
server. Using a unique session.name
value helps to increase the security of your
PHP pages.

You can also use the session_id function
to access the session ID instead of using the
PHPSESSID cookie. Before using the session_id
function, you should call the session_start
function to indicate that you will use session
information.

Example:
print session_id();

152

PHP

START A SESSION

⁄ To start a session,
type session_start().

� The session_start
function should be placed
before any HTML code on
your PHP page.

¤ Display the PHP
page in a Web browser.

� The session is started.

ACCESS THE SESSION ID

⁄ Type $PHPSESSID
where you want to access
a session ID.

¤ Type the code that will
display the session ID in a
Web browser.

‹ Display the PHP page
in a Web browser.

� The Web browser
displays the result of
accessing the session ID.

A session is created for each user that requests a PHP
page from your Web site. A session enables a Web
server to use cookies to collect and use information

entered by a user while the user accesses resources on the
Web server. For example, if a user specifies a user name on
the main page of a Web site, this user name can be used
by the Web server to personalize any other Web pages the
user requests during that session.

To start a session in a PHP page, you use the
session_start function. The session_start function
must be placed before any HTML code on your PHP page.
It is also good programming practice to start a session at the
beginning of your PHP page so that session information is
available throughout the page. Calling the session_start
function while an existing session is in progress will not
create a new session or affect the existing session.

The Web server keeps track of each session by assigning
a session ID to identify each current user. When a session
is started, the Web server stores a session ID as a cookie
named PHPSESSID on the user's computer. When the user
requests another page from the site, the user's Web browser
sends the session ID to the Web server to identify the user.
To access the current session ID using a PHP page, you type
$PHPSESSID.

Session IDs are randomly generated by the Web server.
You should not use the session ID as a unique identifier,
such as the primary key in a database, as the session ID
may not always be unique. For example, if the Web server
is restarted, the server may assign a user a session ID that
was previously assigned to a different user.

START A SESSION

MANAGING COOKIES AND SESSIONS 7

Access a Session ID - Microsoft Internet Explorer

155

All session variables and the information stored in them
will be discarded when the session ends or is terminated.
If necessary, you can use cookies or a database to save
the information stored in a session variable.

The session_is_registered function can be used
to determine if a variable has been registered as a session
variable. The function will return a value of true if the
variable has been registered in the current session.

Example:
if (session_is_registered("userName"))
{

print "The user name has been registered.";
}
else
{

print "The user name does not exist in this Web site.";
}

You can use the session_unregister
function to remove a session variable you
created in the current session.

Example:
session_unregister("userName");

To remove all the session variables that
have been created for the current session,
you can use the session_unset
function. The session will remain open
after you use the session_unset
function, but the variables created during
the session will no longer be available.

Example:
session_unset();

154

PHP

CREATE A SESSION VARIABLE

⁄ To create a session variable,
type session_register().

¤ Between the parentheses,
type a name for the session
variable, enclosed in quotation
marks.

‹ Type $ followed by the
name of the session variable.
Then type = followed by the
value you want to assign to
the session variable.

� String values must be
enclosed in quotation marks.

› Display the PHP page
in a Web browser.

� The session variable
is now stored on the
computer.

READ A SESSION VARIABLE

⁄ In the PHP page
where you want to read
information stored in a
session variable, type
session_register().

¤ Between the parentheses,
type the name of the session
variable you want to read,
enclosed in quotation marks.

‹ Type the code that uses
the value of the session
variable.

› Display the PHP page
in a Web browser.

� The Web browser
displays the result of
reading a session variable.

A s a user moves through the pages in your Web site,
the user may be asked to enter information such
as a user name, password or preferences to display

each page. Creating session variables allows you to store
this information and make the information available to
all the pages viewed by the user in your Web site. This
saves the user from having to repeatedly enter the same
information to display each page during a session.

You use the session_register function to specify
the name of the variable you want to create. The name of
the session variable must be enclosed in quotation marks.
Once the session variable has been registered, you can
assign a value to the variable. The information stored in
a session variable can come from sources such as forms,
databases and cookies.

After creating a session variable, you can use the
session_register function to read the information
stored in the session variable. You can also change the

value assigned to a session variable in any PHP page.
Changes made to a variable will affect all the PHP pages
that use the variable. You can use the session variable
in your PHP pages as you would use any variable.

The session_start function should be called at
the beginning of every PHP page that will use session
information. Calling the session_start function
will have no effect if a session is already in progress.
If the session_register function is used before
the session_start function is called, a session will
be started automatically.

The use of session variables is an effective way of
collecting and accessing information across multiple
pages on a Web site and is more secure and easier
to maintain than HTML hidden fields or cookies.

CREATE AND READ A SESSION VARIABLE

MANAGING COOKIES AND SESSIONS 7

157

� The session information
has been written to the file.

Saving session information to a file is an effective
way of storing relatively small amounts of session
information. If you plan to store large amounts
of session information, you should consider
storing the information in a database. A database
provides a more efficient and versatile means
of storing session information. In order to store
session information in a database, your Web
server must have database capabilities.

If you do not want the file that stores session
information to be overwritten each time a client
visits the PHP page, you can append data to the
file. This is useful when you want to store session
information for multiple users in a single file. To
access the information for a particular session
later, you can search the file for a unique identifier
for the information.

Saving session information to a file
can be used in conjunction with, or as
an alternative to, storing information in
cookies. Saving session information to
a file can be more reliable than using
cookies to store information, since some
users may disable cookies in their Web
browsers.

› Type the code that
writes the string returned
by the session_encode
function to the file.

ˇ Type the code that
closes the file.

Á Display the PHP page
in a Web browser.

156

PHP

SAVE SESSION INFORMATION TO A FILE

⁄ Type the code that
creates the session variables
you want to use to store
session information.

� For information about
creating session variables,
see page 154.

¤ To be able to store the
encoded session information
in a file, type the code that
opens the file for writing.

‹ To encode the session
information in a string,
type session_encode().

S ession information you store in session variables will
be available for the duration of the current session.
If the session times out or is otherwise terminated by

the Web server or client, any session information that has
been created will be lost. If you want to be able to access
session information after a session has ended, you can
save the session information to a file. This is useful when
you want to be able to restore the information for a client
at a later time.

To save session information to a file, you use the
session_encode function to encode the information
for the session in a string. After encoding the session
information, you can write the string returned by the
function to a file. You must use the fopen function to
open the file and use the fputs function to write the
encoded session information to the file. For more
information about writing data to a file, see page 124.

The encoded session information saved in a file includes
session information you have stored in session variables,
but does not include the session ID of the current session.
This enables you to restore the session variables to a
new session that has a different session ID. For example,
saving session information makes it easy to transfer the
information between multiple Web servers used by the
same Web site. When a user accesses a different Web
server on the Web site, the session information saved in
a file can be passed to the new Web server with the client,
maintaining continuity even though a new session has
been started on the second server.

After saving session information to a file, you can have
a PHP page restore the session information from the file.
For information about restoring session information from
a file, see page 158.

SAVE SESSION INFORMATION TO A FILE

MANAGING COOKIES AND SESSIONS 7

159

� The Web browser displays
the result of restoring session
information from a file.

If you use the session_decode function
within another function, the scope of the
session variables restored from a file will be
limited to that function. If you want to be
able to use the session variables outside the
function, you must use the global keyword
to give the session variables returned by the
session_decode function global scope.

Example:
function getname()
{

$fp = fopen("sessionInfo.txt", "r");
global $userName, $location;
session_decode(fgets($fp, 4096));
fclose($fp);

}

Session information stored in a file is encoded
in a format that is easy to read and understand.
You can open the file that stores session
information in a text editor or word processor
to view the session information before restoring
the information in a PHP page. Viewing session
information can be useful for troubleshooting
session-related problems.

Example:
userName|s:4:"Paul";location|s:8:"New York";

As with any file you want to access from
within a PHP page, the file that stores
session information you want to restore
must have the appropriate file and operating
system permissions in order for you to
retrieve information from the file. For more
information about file and operating system
permissions, consult the documentation for
your Web server and operating system.

› Type the code that
closes the file.

ˇ Type the code that uses
the session information
restored from the file.

Á Display the PHP page
in a Web browser.

158

PHP

RESTORE SESSION INFORMATION FROM A FILE

⁄ To open the file that
contains the session
information you want to
restore, type the code that
opens the file for reading.

¤ To restore the session
information stored in the
file, type session_decode().

‹ Between the parentheses,
type the code that uses the
fgets function to retrieve the
information stored in the file.

Y ou can have a PHP page restore session information
you stored in a file. This allows you to make the
session information from a previous session available

to a new session. For example, if you saved session
variables containing a user's login information to a file,
you can restore the information when the user begins a
new session. This saves the user from having to re-enter
the information each time a new session is started.
Restoring session information from a previous session
does not alter the session ID for the current session.

To restore session information from a file, you first open
the file for reading using the fopen function. For more
information about opening a file for reading, see page 126.
The session_decode function can then be used to
decode and restore the session information from the file.
The session_decode function takes a string of text
containing encoded session information as its argument.
You can use the fgets function to retrieve the string that

contains the session information you want to restore from
the file. For more information about the fgets function,
see page 126.

When session information is restored from a file, the
session variables stored in the file are automatically
available to the PHP page. This means that you do not
need to recreate the variables in the page.

After storing session information in a file, a new
session must be started before the session information
can be restored from the file. You should use the
session_start function on a PHP page that restores
session information to start a new session. The
session_start function must be placed before any
HTML code on the PHP page. For more information
about the session_start function, see page 152.

RESTORE SESSION
INFORMATION FROM A FILE

MANAGING COOKIES AND SESSIONS 7

