
177176

PHP

O ne of the most useful features of PHP is the ability
to access a database. Databases store and manage
large collections of information. PHP pages can be

used to make this information available to the users who
visit your Web site.

Instead of storing information in text files or static Web
pages, a PHP page can be set up to retrieve, format and
display data from a database. When a user accesses the

PHP page, the information in the PHP page will be created
from the current information in the database. A PHP page
can also allow users to manipulate the data in a database.

Using databases to store information and then using PHP
pages to access that information is an efficient method of
displaying up-to-date information in a Web site.

INTRODUCTION TO DATABASES

WORK WITH DATABASES 9

DATABASE STRUCTURE

Information in a database is made up of two
components––raw data and meta-data. The raw data
component of a database is the actual information
being stored, such as the phone number of a client.
The meta-data component of a database determines the
way the data is structured and organized. For example,
data in a database is usually organized into tables,
which consist of fields and records. A field is a specific

category of information in a table, such as the first
names of all your clients. A record is a collection of
information about one person, place or thing, such as
the name and address of a client. More sophisticated
databases would also contain meta-data such as data
types and the relationship between tables.

TYPES OF DATABASES

Flat File Databases

Flat file databases are the most basic database type. Flat
file databases have minimal structure and usually store
information in one large table, similar to a tab-delimited
text file. A flat file database is very easy to set up and is
ideal for creating simple Web applications that use small
amounts of data, such as an application that keeps track
of user preferences.

When working with larger applications, a flat file
database can be inefficient and difficult to maintain.
The simple structure of a flat file database makes it
inadequate for storing complex relationships, resulting
in the duplication of information. Also, if your data
storage requirements change, a flat file database can
be very difficult to modify.

Hierarchical Databases

A hierarchical database organizes data into different
levels, similar to directories and sub-directories. This
organization makes data access fast and easy. You
would typically use a hierarchical database to store
large amounts of information that seldom need to
be changed, such as contact lists or user directories.
Some of the hierarchical databases supported by PHP
use the Lightweight Directory Access Protocol (LDAP).
This protocol was designed specifically for reading
data quickly. You can use PHP's LDAP functions to
access these types of databases.

Due to its rigid structure, manipulating data in
a hierarchical database can be very slow. Data
redundancy can also be problem. For example, if you
organized customers by method of payment in a
hierarchical database, a customer who pays by both
cash and credit card would have two accounts. Data
redundancy makes hierarchical databases inefficient
for certain applications.

Relational Databases

Relational databases store information in separate
tables. Each record in a table has a unique identifier,
or primary key, which can be used to form relationships
with entries in other tables. Using relationships to bring
together information from different tables eliminates
data redundancy. Relational databases are powerful,
flexible and effectively store large amounts of

information. A relational database is also faster and
easier to maintain than other types of databases. You
would typically use a relational database when building
dynamic database-driven Web sites with PHP.

The type of database you are using determines the
structure of the database and the way data is organized
in the database. A database with a simple structure allows
you to access data quickly, but manipulating the data may
be difficult. A database with a more complex structure
allows you to easily manipulate data, but requires more

resources. When selecting a database, you should
consider the amount of data that will be stored and
how the data is going to change over time. PHP
is commonly used with flat file, hierarchical and
relational databases.

DATABASE MANAGEMENT SYSTEM (DBMS)

To access and modify the data in a database, you
need a program or set of programs called a DataBase
Management System (DBMS). Depending on the type
of database you are using, the DBMS can be very
simple or very sophisticated. For example, you can

write your own DBMS in PHP for a flat file database.
You can also obtain a DBMS, such as MySQL or Oracle,
which is capable of handling more complex databases.

ACCESSING A DATABASE

The way you access a database depends on the type of
database you are using. You can use PHP's Filesystem
functions to directly access a flat file database. For other
types of databases, you must create a connection to the
database before you can access the database. To create
a connection to a database, you use the set of PHP
functions specifically written to work with the database

you are using. For example, if you are using a MySQL
database, you would use PHP's MySQL functions. If
the database you are using does not have its own set
of functions, you can use PHP's Unified ODBC functions
to connect to the database. ODBC, or Open DataBase
Connectivity, is a standard supported by many
databases.

179178

PHP

Y ou should take the time to properly design a database,
especially when working with a relational database
management system. A good database design ensures

that you will be able to perform tasks efficiently and
accurately. As you add information to a database, the
database becomes larger and more complex. A database

that is designed properly will be easier to modify and work
with as it grows. Good planning can also make it easier for
other users to work with a database you create.

PLAN A DATABASE

WORK WITH DATABASES 9

Determine the Tables You Need

Gather all the information you want to store in
the database and then divide the information into
separate tables. A table should contain related
information about one subject only. The same
information should not appear in more than one
table in a database. You can work more efficiently
and reduce errors if you need to update information
in only one table.

Consider the Fields You Need

Each field should relate directly to the subject
of the table. When adding fields, make sure you
break down information into its smallest parts. For
example, break down names into two fields called
firstName and lastName.

Try to keep the number of fields in a table to a
minimum. For example, do not include a field
containing data you can calculate from other fields.
Tables with many fields increase the time it takes
to process information in a database.

Determine the Relationship Between Tables

A relationship tells a relational database how
to bring together related information stored in
separate tables. You can use the primary key to
form a relationship between tables. A primary key
is one or more fields that uniquely identifies each
record in a table. For example, the primary key
for a table of employees could be the social
security number of each employee.

Determine the Purpose of the Database

Decide what you want the database to do and how
you plan to use the information. If other people will
be using the database, you should consult with
them and consider their needs. This can help you
determine what information you need to include
to make the database complete.

Security and Reliability

You should determine the level of security you
will need to protect the information the database
will store. If the database will store sensitive
information such as credit card numbers, you
need to select a database system that is secure
and reliable. To ensure maximum security, you
may even want to create a separate database to
store sensitive information.

Anticipate Future Needs

Decide on a naming convention for databases,
tables and fields. Make sure names are concise and
descriptive to prevent confusion in case changes
need to be made in the future. If many people will
work with the database, you should also decide
on a method for documenting changes made to the
database. For example, you can use a spreadsheet
program to keep track of the dates and times
changes were made and the name of the person
who made the changes.

P HP supports a wide variety of DataBase Management
Systems (DBMS) that you can use to store and
manage information you want to make available

in your PHP pages. When choosing a DBMS, you should
consider a number of factors, such as your budget and
the volume of information the database will be required

to handle. You should also consider the ease with which
you will be able to move data to a more robust system if
the database grows beyond the capabilities of the current
system. If the DBMS you use does not support accepted
standards, moving data to a new system might be difficult.

SELECT A DATABASE MANAGEMENT SYSTEM

Oracle

Oracle is a powerful database program that is typically used
with high-end Web servers on large commercial Web sites,
such as sites that offer online shopping. Oracle is reliable,
provides advanced security, is highly scalable and includes
powerful tools that you can use to manage your database.
Oracle is available for both Unix and Windows computers.
For more information about the Oracle database program,
you can visit the www.oracle.com Web site.

Microsoft SQL Server

Microsoft SQL Server is an industrial-strength DBMS that
offers features that are comparable to Oracle. SQL Server
includes advanced features, such as OnLine Analytical
Processing (OLAP) and data mining, which allow you to
work more efficiently with information in a large database.
SQL Server is only available for use with Windows systems.
For more information about SQL Server, you can visit the
www.microsoft.com/sql Web site.

Microsoft Access

Microsoft Access is a database program that is useful for
small to medium-sized applications. Access is available as
a stand-alone product or as part of the Microsoft Office
package. There are currently no built-in PHP functions that
allow you to connect to an Access database from a PHP page,
so you must use PHP's Unified ODBC functions to connect.
For more information about PHP's Unified ODBC functions,
you can visit the www.php.net/manual/en/ref.odbc.php
Web site. Information about Access is available at the
www.microsoft.com/access Web site.

MySQL

MySQL is the database program most commonly
used to develop database-driven PHP Web sites.
MySQL is a fast, efficient program that is available
for use on Unix and Windows computers. MySQL
is suitable for small to medium-sized projects
and requires very few system resources to run.
MySQL is also an Open Source product, which
means you can use it free of charge. Although
MySQL is very powerful, it is relatively easy to
install and manage. This makes it a good program
for new developers to use when learning to work
with databases using PHP. More information
about MySQL is available at the www.mysql.com
Web site.

PostgreSQL

PostgreSQL is another popular DBMS used with
PHP. Like MySQL, PostgreSQL is an Open Source
product that is freely available for personal and
commercial use, but PostgreSQL is a more
advanced system that supports almost all SQL
features. PostgreSQL is available for use only
on Unix systems and is usually included with
the RedHat distribution of the Linux operating
system. For more information about PostgreSQL,
you can visit the www.postgresql.org Web site.

181180

PHP

R elational database management systems, such as
MySQL and Oracle, are usually used for building
dynamic, database-driven Web sites with PHP. In

order for a PHP script to work with data in a relational
database, the script must be able to communicate with the
database. Structured Query Language (SQL) is the language
used in a PHP script to communicate with a database.

Originally developed by IBM as a database query language
for use with mainframe computers, SQL was soon adopted
by many vendors for use with their relational database
management systems. Most relational database management
systems that have a client/server structure now support SQL.

INTRODUCTION TO
STRUCTURED QUERY LANGUAGE

WORK WITH DATABASES 9

Flexibility

The ability to easily manipulate data into many
useful forms makes SQL a very effective tool. SQL
allows you to easily format data you retrieve from
a database in a variety of ways. You can sort data
in a specific order, create summaries and combine
information from different fields. This saves
you from having to expend additional time and
resources to format the retrieved data in PHP.

Vendor Specifications

Although many of the basic concepts of SQL,
such as selecting and inserting data, are common
to most database management systems, certain
features may vary depending on the vendor of the
system. For example, a database may include a
unique set of commands that allow users to access
information about a table. These commands may
not work for other databases since they are not
part of the standard set of SQL statements. The
types of information that a database can store
may also vary depending on the vendor.

Standardization

SQL is the industry standard language for managing and
manipulating data in a database. SQL can be used to
work with many types of databases, which makes it easy
to upgrade from one database management system to
another. For example, a small Web site might start out
using MySQL but then grow large enough to require a
database created using Oracle. You have to learn only
one language to have your PHP scripts communicate
with both types of databases.

Ease of Use

SQL uses many easy-to-understand commands, which
makes it a very simple language to work with. For
example, SQL uses the INSERT statement to add
information to a database and the DELETE statement
to remove information. These plain-language commands
make it easy for you to read and determine the purpose
of SQL code.

Power

Although SQL is easy to use, it is a very powerful
language. As well as being suitable for retrieving data
from a database and performing simple tasks such
as adding and deleting records, SQL can be used to
perform complicated procedures, such as compiling
different types of data from multiple data sources.

SELECT

The SELECT statement allows you to retrieve data
from a database. You specify the names of the fields
from which you want to retrieve data after the SELECT
statement. The SELECT statement uses the FROM
clause to specify the name of the table that stores the
data you want to retrieve. The WHERE clause specifies
exactly which data you want to retrieve.

Example:
SELECT invoiceNumber, totalCost FROM orders
WHERE totalCost > 100.00

Result Set

The SELECT statement returns data in a table format
called a result set. The fields you specify make up the
columns of the table and the information from each
field forms the rows. For example, when you issue a
SELECT statement that retrieves the invoice numbers
for orders totaling less than $100 from a table in a
database, the result set will display a table with two
columns that show the invoice numbers and the
amounts.

The SELECT statement allows you to access different
groups of data from one or more tables and display the
data in a single result set. You can indicate parameters
with the SELECT statement, such as a specific sorting
order, to control the way the data is displayed in the
result set.

DELETE

The DELETE statement is used to remove data from
a database. The DELETE statement uses the FROM
clause to specify the name of the table that stores the
data you want to delete. The WHERE clause contains
information that uniquely identifies the data you want
to delete.

Example:
DELETE FROM orders WHERE year < 1996

CREATE TABLE

The CREATE TABLE statement is used to create a new
table in a database. You indicate the name of the table you
want to create after the CREATE TABLE statement and
then specify the fields you want to include in the table.
You also specify a description of each field that includes
the data type of the field and other attributes, such as the
maximum number of characters the field can hold. The
data types you specify will depend on the database you
are using. You should refer to the database documentation
for more information.

Example:
CREATE TABLE orders
(

invoiceNumber INT(8),
orderDetails CHAR(255),
totalCost FLOAT(9, 2)

)

INSERT

The INSERT statement allows you to add records to a
database. The INSERT statement uses the INTO clause
to specify the name of the table to which you want to
add data and the names of the fields that store the data
in the table. The VALUES clause specifies the values you
are adding.

Example:
INSERT INTO orders (invoiceNumber, totalCost)
VALUES (12843, 34.56)

UPDATE

The UPDATE statement is used to modify data in a
database. You indicate the table that contains the data you
want to modify after the UPDATE statement. The UPDATE
statement uses the SET statement to indicate which field
needs to be changed and the new value. The WHERE clause
is then used to specify the data to be modified.

Example:
UPDATE orders SET totalCost = 55.66
WHERE invoiceNumber = 12843

SQL STATEMENTS

SQL is made up of many statements and clauses.
In order to work with a database in your PHP
scripts, you will need to be familiar with some
common SQL statements and how they are used.

183

| students |
+--------------------+
2 rows in set (0.06 sec)

mysql> SELECT FROM students;
+--------------+-------------+------------------+
| studentID | firstName | lastName |
+--------------+-------------+------------------+
10293843	Martine	Edwards
01298348	Lindsay	Sandman
10562940	Sandy	Rodrigues
38290169	Barry	Pruett
+--------------+-------------+-----------------+
4 rows in set (0.00 sec)

mysql> CREATE TABLE teachers
 -> (
 -> teacherID CHAR(4),
 -> firstName CHAR(20),
 -> lastName CHAR(25)
 ->);
Query OK, 0 rows affected (0.05 sec)

mysql> INSERT INTO teachers (teacherID, firstName, lastName)
 -> VALUES ("2323", "Maureen", "Spears");

*

Type 'help;' or '\h' for help. Type '\c' to clear the buffer

mysql> SHOW DATABASES;

| Database |

| books
| school
| shopping
| videos

4 rows in set (0.00 sec)

mysql> USE school;
Database changed
mysql> SHOW TABLES;
+-------------------------+
| Tables_in_school |
+-------------------------+
| courses |
| students |
+-------------------------+
2 rows in set (0.06 sec)

mysql> SELECT FROM students;

+--------------+

+--------------+

+--------------+

*

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 3.23.33

Type 'help;' or '\h' for help. Type '\c' to clear the buffer

mysql> SHOW DATABASES;

| Database

| books
| school
| shopping
| video

4 rows in set (0.00 sec)

mysql> USE school;
Database changed
mysql> SHOW TABLES;

+--------------+

+--------------+

+--------------+

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 7 to server version: 3.23.33

Type 'help;' or '\h' for help. Type '\c' to clear the buffer

mysql> SHOW DATABASES;

To access a database server from a remote
computer, you must connect to the server through
a local area network or Internet connection. To do
so, you need to know the address of the server
and login information, such as a user name and
password. If you are using an Internet Service
Provider (ISP) to run your PHP scripts, you will
typically have access to a database server,
although there may be additional costs for the
server's use. You can consult your ISP to obtain
more information about connecting to the
database server.

In addition to text-based client software,
most relational database management
systems also include a client that utilizes
a Graphical User Interface (GUI). You can
use GUI client software to modify and
administer a database without having to
type SQL statements. This type of client
software is much easier to use than a
text-based client and can help you quickly
set up a database.

You may want to type your SQL statements
in a text editor and then copy and paste the
statements into the client software. Typing
long SQL statements directly into client
software can be a slow and tedious process.
If you make a mistake that generates an error,
you will have to retype the entire statement
again. When working in a text editor, you can
easily edit your SQL statements and even
save the statements for later use.

� A list of the tables in
the database appears.

ˇ To display the contents of
a table, type SELECT * FROM
followed by the name of the
table whose contents you
want to view. Then type a
semicolon and press Enter.

� The contents of the table
appear.

Á To create a new table in the
current database, type CREATE
TABLE followed by the name of
the table you want to create.
Then press Enter.182

PHP

USING A DATABASE CLIENT

⁄ Locate and start the
client software for your
database management
system.

� The database server
you want to connect
to must be running.

¤ To display a list of the
databases on the server,
type SHOW DATABASES;
and then press Enter.

� A list of the databases
on the server appears.

‹ To select the database you
want to work with, type USE
followed by the name of the
database and a semicolon.
Then press Enter.

› To display a list of
the tables in the current
database, type SHOW
TABLES; and then press
Enter.

T he most popular relational DataBase Management
Systems (DBMS) have a client/server architecture.
A client/server architecture allows multiple users to

simultaneously connect to a single database. Compared to
other database management systems, this type of system
is extremely cost effective and offers a high level of
performance.

The server component of the DBMS contains the actual
database. The server software interprets commands from
users and then manages the data in the database accordingly.

The client component of the system provides the interface
needed to work with the server. You can issue Structured
Query Language (SQL) statements from a text-based client
to perform tasks such as displaying a list of the databases
on the server, finding a list of the tables in a database or
viewing the contents of a table.

You can also use the client software that came with your
DBMS to set up a database. While it is possible to perform
tasks such as creating the tables for a database by issuing

SQL statements from a PHP script, this process is often more
difficult and time consuming than using the client software.
Typically, client software can also be used to perform
administrative duties, such as adding users to the system,
provided the correct access privileges have been granted.

When a DBMS is installed on a server, both the server and
client software are installed. To access the server from a
remote computer, only the client software is required on
the computer. The operating system of some client
computers may have to be altered in order to work properly
with the client software. For more information, consult the
documentation that came with your DBMS. Before using
the client software to work with a database, you must make
sure that both the client and server software are running.
It is a common error to launch the client software without
launching the server software first.

USING A DATABASE CLIENT

WORK WITH DATABASES 9

‡ Type the code that
creates fields and
records for the table.

� The new table is
created and added
to the database.

