Designing Games
with
Game Maker

version 5.0 (April 14, 2003)

Written by Mark Overmars

Table of Contents

Chapter 1 So you want to create your own COMPUtEr gamesS.........coceverereerenennens 6
Chapter 2 INSEAHALTONc.eiieieee e 8
(@ aF=To1 = SRS T S U=o S - o] 1P 9
Chapter 4 The global IHEa.......cccooi i 10
Chapter 5 Let uslook at an eXample.......cccveeererieieereeiesee e 12
Chapter 6 Theglobal user INtErface........cooeeiiiir e 14
6.1 FlEIMENU..eeiiiie et 14
6.2 Bt MENU ... e s 15
(IR T o o I 0 1 R 15
6.4 WINAOW MENU.....uiitiiiiiiiiieieie ettt sttt nbe e sne e 15
6.5 HEIP MENU....eoiiiiiee e e 16
6.6 ThETIESOUICE EXPIOTENcoeieieeeeieie ettt sa e neas 16
Chapter 7 DEfiNING SPIITESiieeitieie et s ees 17
Chapter 8 SOUNAS AN MUSIC.....coviiiiiieieeie e e 19
Chapter 9 BackgrOUNGS.......ccuoieeiuirieiiesieeiesee et 20
Chapter 10 DefiNiNg ODJECES.....cceiiiiieiierieee e e 21
(@ gF=T o] = g R = 0| SRR 23
Chapter 12 ACHIONS......i it e e s ae e e be e sre e ere e reeaanas 29
121 IMOVE BCHIONS.eeeieeeeiieteeieeeesiee e e ee st e e eseesseeee e sseeeesseesseeeesneesseensesneessennsens 29
12.2 MaAINACHONS, SEE L ...eiiiiieieeieeee e 32
123 MaINACHONS, SEL 2 ...ttt 34
I (oo 11 (o PSPPSRI 35
125 Drawing 8CHONScceiveiueriieiieieie e sttt sttt s bt e e e e e b e sne e 38
12,6 SCOMEACHIONSeeueeieie et stesiee ettt sttt ettt ettt esbesse s et e neenbeneeene e 39
12,7 Code related BCHIONS.coereerieeieeieniee ettt ee e see e 41
12.8 Using expressions and Variables ... 42
Chapter 13 Creating FOOMScoirieiirterieeieeeee et eesr e besae b s neens 44
131 AdAiNG INSLANCES........ceceeieeeeceee ettt s e e nesneesreennens 45
13.2 ROOM SEING .veiiereetie ettt ettt e re e e st e e be e e aeesbeessteenbeesnseenseesnneens 45
13.3 Setting the DackgroUnd...........coceeriineieeee e 46
Chapter 14 DiStributing YOUr Qame.........cocociiiiiiiiereereeee e 47
Chapter 15 AdvanCed MOUEcceeiriererieiese et sns 48
G300 R 1= 1 1= 1 1 OSSPSR 48
ST o) 1 07 o PSPPI 50
15.3 AQD MENU...otiiiiiieee ettt sttt st et e e st e neesreesrennnens 50
Chapter 16 MOre about SPrItES......ccciiiiiiecie e 51
16.1 EditiNg YOUr SPHTEScviitiiiieiieieeietesee ettt 51
16.2 Editing individual SUD-TMAJEScceiieieiiesieese e 56
16.3 Advanced SPrite SEtINGScccvveieeiiieiie e 57
Chapter 17 More about soundS and MUSICcceeieieeieeieceeseee e 59

Chapter 19 MoOre about ODJECES........ccvieeiieeeeece e 61
S S R I = o o O SURRPRRN 61
19.2 PerSiStent ODJECES... ..o e 61
19.3 ParENES..c e e b 61
S V= 1SS 62
19.5 INFOIMELION......coiieieeeciee et sr e esseenbeeneesneeseeennens 62

Chapter 20 MOre abOUL FOOMSccoiuiieiriieieeieee e 63
P20 A0 (V7= 00 o S 1 63
P20 2 Ao (o 1 0o 1 =SS 63
P20 B VT TSP 66

Chapter 21 PalNS.....cc.ooiieieee e e 67
211 DEfINING PAINS....ceiiiiieiiieeeee e 67
A 72 AN To (o TR To o= 1S (0] 0] o= £ S 68
21.3 TREPAN @VENL ... e e 69

Chapter 22 TIMELINES....cii ettt eeans 70

(O gF=T o] = G2 TS] o £ T PSSP 72

Chapter 24 DatafilES.....ccecieee et 75

Chapter 25 GameinformMation..........ccccceieeieiieseece e 77

Chapter 26 GamE OPLIONSccuveeeeciecie ettt re e s reesreeneeens 78
26.1 GraphiCS OPLIONScoueiuerierieeeeieie sttt be e e s sn b srenne e 78
PG TZ o =-'o [V 11 o o 79
PG T B (= VAo o1 0] 1 S 80
26.4 LOAOING OPLIONS.....couieieirteeieeiesiee e eee et eesreeste e e s steseesaeesaesneesneesbeeneesaeenes 80
26.5 EITON OPLIONS ...oviiitiiieeiieieeieeee ettt e et see b nreas 81
26.6 INFO OPLIONSoeeeeieieceee ettt e r e e s e e nreeneesnee e 81

Chapter 27 Speed CONSIAEr atiONS........cceeieeieeieseeie e enes 82

Chapter 288 The Game Maker Language (GML)oooevveveieeseee e 83
P22 S 0 R N o (0T [=T PSR 83
28.2 VaTADIES .. e 83
28.3 ASSINIMENES.....eiitiitiiieeieeieeeeee ettt b e bt e e et et nbe b nre s 84
A T (o =SS [0 < S 84
285 BEXIrAVATADIES. ..o e 85
28.6 Addressing variables in other INStaNCES..........cooevererene e 85
P S R A AN 1 - TSR 87
28.8 I SAEMENT ... et nreas 87
28.9 REPEAL SLALEMENL ..ot e e 88
2810 WNhIlE SEAEMENT.....uiiiieiciieee et sbe e 88
28.11 DO SEELEIMENT ... e sr e e 88
28.12 FOr SEAEEMIENT ... e s s 89
22 T G TS VIV (o g IS (0= | 89
2814 Break StaEmMENT......ccccoierieie e 90
28.15 CONtiNUE SEALEMENTooiieiieiieeieee et 90
P22 T T () R = 10 | S 90

28.17 FUNCEIONS ..t eeaeaaeeas 91

P22 TN TS o 1 o TSR 91
28.19 WIith CONSITUCLIONSeeieceeecieeie ettt 91
28.20 COMIMENT ...t r e sne e e n e e sne e sn e e sneesnneenneas 93
28.21 Functions and variables in GML.........cccooiiieiiniinieseee e 93
Chapter 29 Computing tNINGS......ccoieiiiiiece e 94
P2ae TR R o 1 = | £ 94
29.2 Real-ValUES TUNCHIONSccueiieieeieie et 94
20.3 String handling fUNCLIONS.........ccooiiiiiiieeee e e 95
Chapter 30 GML: GAMEPIAYcocveeiecieciece et 97
30.1 MOVING BIOUNGcviiiiieieeieeee ettt b e n e resnennenneas 97
0.2 INSLANCES. ... ettt ettt s e et b e st e e bt e et e sre e et e e ae e nreenneas 99
01 N 11111 USSR 101
30.4 ROOMS N0 SCOME......eiiueeierieesieesteseesieesteseesteesse s e e saeestesaeesbeseesseesbesneesseessesnnans 102
30.5 GENENELING BVENLS.....ccueiuereieieieie ettt e bt e e e e re e sne e 103
30.6 Miscellaneous variables and fUNCLIONScccceviiinenenene e 106
Chapter 31 GML: USEr iINTEraCtioN.......c.ccveveeieseerieeieseesieesie e ste e sae e sseeneeas 107
G 0 N o)V (0 Q= o 00 PSP SSIN 109
Chapter 32 GML: Game graphiCS........ccoceeiieieiierieeie st see e nne s 111
32.1 WINCAOW @NA CUISOTveeuieiiiesieeieeee e sie et ete e sreete s e ssesseesseesseeneesseensesnsens 111
32.2 SPriteS @NU IMBOES ...cveveeeeeieeieie ettt sttt r e s ae e 112
32.3 BaCKOrOUNGS.......cc.eccueiiieieiie ettt sttt st e et e e e snnenreennen 113
A S 1 U= ST 114
325 Drawing fFUNCHONS.........coiiieieieiesiesie s 115
G I VAT Y USSR 119
32.7 TrANSHIONS.....eiitieiieiieriee ettt sttt st sttt b et e st e st e et e s beesbe e e e saeenbesnnens 120
32.8 RePaiNting the SCrEEN........ccciiieeere e 120
Chapter 33 GML: SouNd @Nd MUSICooveeiiiieieiesieie e 122
Chapter 34 GML: Splash screens, highscores, and other pop-ups.........c.cceceeuee. 125
Chapter 35 GML: RESOUICES.......cciiiiierieeeeee ettt 128
L RS o 1 (=TSSP 128
5.2 SOUNGS......ceuieieieiiiste sttt sttt e et bbbt se e e et eenbeseeere e 130
35.3 BaCKGIrOUNGS......cccueiiiitiiieeie ettt sttt sttt esaeenae e 131
L R 1 S 132
LTS TS (] 0SSOSR 132
35.6 DABFIIES ..o e 133
LI A ©] o 1= v £ 133
35.8 ROOIMS ...ttt n e e nne e nne e 133
Chapter 36 GML: Files, registry, and executing programsccoceeeverereeeenes 135
Chapter 37 GML: Multiplayer gamesS.........cccoceierineneneneeeeeeee e 139
37.1 Setting UP @ CONNECLION........ccieieeeeeecie ettt s sre e 139
37.2 Creating and jJOINING SESSIONS......ccueruierirreertersteseeseeseeseessessseseessesssesseessessenas 140
7.3 PlAYEIS . 141
7.4 SNAE UALA.........oiieirieciieeee e 141

Chapter 1 So you want to create your own computer

games

Playing computer games is fun. But it is actually more fun to design your own computer
games and let other people play them. Unfortunately, creating computer games is not
easy. Commercial computer games as you buy nowadays typically take one to three years
of development with teams of anywhere between 10 and 50 people. Budgets easily reach
in the millions of dollars. And all these people are highly experienced: programmers, art
designers, sound technicians, etc.

So does this mean that it is impossible to create your own computer games? Fortunately
not. Of course you should not expect that you could create your own Quake or Age of
Empires within a few weeks. But that is also not necessary. A bit smpler games, like
Tetris, Pacman, Space Invaders, etc. are also fun to play and a lot easier to create.
Unfortunately they still require good programming skills to handle the graphics, sounds,
user interaction, etc.

But here come Game Maker. Game Maker has been written to make it a lot easier to
create such games. There is no need to program. An intuitive and easy to use drag-and-
drop interface allows you to create your own games very quickly. You can import and
create images, sprites (animated images) and sounds and use them. You easily define the
objects in your game and indicate their behavior. And you can define appealing rooms
with scrolling backgrounds in which the game take place. And if you want full control
there is actually an easy-to-use programming language built into Game Maker that gives
you full control over what is happening in your game.

Game Maker focuses on two-dimensional games. So no 3-D worlds like Quake. But don’'t
let this put you down. Many great games, like Age of Empires, the Command & Conquer
series, and Diablo use two-dimensional sprite technology, even though they look very 3-
dimensional. And designing two-dimensional games is alot easier and faster.

Probably the best part is that Game Maker can be used free of charge. And there are no
restrictions on the games you create with it. In the games no nag screen will be shown,
and you can even sdl them if you like. See the enclosed license agreement for more
details. You are though strongly encouraged to register your copy of Game Maker. This
will support the further development of Game Maker.

This document will tell you all you need to know about Game Maker and how you can
create your own games with it. Please redlize that, even with a program like Game
Maker, designing computer games is not completely trivial. There are too many aspects
that are important: game play, graphics, sounds, user interaction, etc. Start with easy
examples and you will redlize that creating games is great fun. Also check the web site

http://www.gamemaker.nl/

and the forum there, for lots of examples, ideas, and help. And soon you will become a
master game maker yourself. Enjoy.

Chapter 2 Installation

You probably aready did this but if not, here is how to install Game Maker. Simply run
the program gmaker . exe. Follow the onscreen instructions. You can ingtal the
program anywhere you like but you best follow the default suggestions given. Once
installation is completed, in the Start menu you will find a new program group where you
can start Game Maker and read the documentation. Besides the Game Maker program
also the documentation is installed, together with the help file.

The first time you run Game Maker you are asked whether you want to run the program
in Simple or Advanced mode. If you have not used a game creation program before and
you are not an experienced programmer, you better use smple mode (so select No). In
simple mode fewer options are shown. You can easily switch to advanced mode letter
using the appropriate item in the File menu.

Within the installation folder (default C. / Program Fi | es/ Gane_Maker 5/) there will
be a number of other folders:
exanpl es: contains a number of example games, for you to check and/or
change.
l'i b: contains a number of libraries of actions. If you want to install additiona
action libraries you must put them in this folder.
sprites: this folder is meant to contain sprites you can use. The default
installation does install just a few sprites but from the Game Maker website
(http://www.gamemaker.nl/) you can load a number of resource packs that
contain additional sprites, sounds, backgrounds, etc.
backgrounds, sounds: similar folders that are meant to contain the
background images and sounds.

Game Maker requires a modern Pentium PC running Windows 98, NT, 2000, Me, XP, or
later. It requires a screen resolution of at least 800x600 and 65000 (16-hit) colors. It
requires DirectX to be installed on your computer. When designing and testing games,
the memory requirements are pretty high (at least 32 MB and preferably more). When
just running games, the memory requirements are a lot less severe and depend a lot on the
type of game.

Chapter 3 Registration

As indicated above, Game Maker can be used free of charge. There are no restrictions on
the games you create with it. In the games ro nag screens are shown and you can even
sall the games if you like. See the enclosed license agreement for more detalils.

You are though highly recommended to register your copy of Game Maker. Through
registration you help the further development of the program. It will also remove the nag
screen in the creator. In the future we plan further benefits for registered users, for
example a game competition.

The registration fee for Game Maker is US $15 or 15 Euro. There are a number of ways
in which you can register your copy of the program. The easiest way is to use online
registration use a scure credit card payment system or a PayPal account. Alternatively
you can transfer money to our bank account, send us a money order or send cash. Details
can be found on the Game Maker registration web site:

www.gamemaker.nl/registration.html

To register your copy of Game Maker use the web site above or choose Registration
from the Help menu. At the bottom of the form that appears click the button
Registration. You will be brought to our web page were the different registration options
are indicated, including the online registration

Once your registration has been recelved an email will be send to you with the name and
key and information how to enter the key in the program. To enter the key, again choose
Registration from the Help menu. At the bottom of the form press the button Enter Key.
Type the name and key and press OK. If you made no mistakes the program is registered.

Chapter 4 The global idea

Before delving into the possibilities of Game Maker it is good to first get a feeling for the
global idea behind the program. Games created with Game Maker take place in one or
more rooms (Rooms are flat, not 3D, but they can contain 3D-looking graphics.) In these
rooms you place objects, which you can define in the program. Typical objects are the
walls, moving balls, the main character, monsters, etc. Some objects, like walls, just sit
there and don’t do anything. Other objects, like the main character, will move around and
react to input from the player (keyboard, mouse, and joystick) and to each other. For
example, when the main character meets a monster he might die. Objects are the most
important ingredients of games made with Game Maker, so let us talk a bit more about
them.

First of al, most objects need some image to make them visible on the screen. Such
images are call sprites. A sprite is often not a single image but a set of images that are
shown one after the other to create an animation. In this way it looks like the character
walks, aball rotates, a spaceship explodes, etc. During the game the sprite for a particular
object can change. (So the character can look different when it walks to the left or to the
right.) You can create you own sprite in Game Maker or load them from files (e.g.
animated GIF's).

Certain things will happen to objects. Such happenings are called events Objects can take
certain actions when events happen. There are alarge number of different events that can
take place and a large number of different actions that you can let your objects take. For
example, there is a creation event when the object gets created. (To be more precise,
when an instance of an object gets created; there can be multiple instances of the same
object.) For example, when a ball object gets created you can give it some motion action
such that is starts moving. When two objects meet you get a collision event. In such a
case you can make the ball stop or reverse direction. Y ou can aso play a sound effect. To
thisend Game Maker lets you define sounds. When the player presses a key on the
keyboard there is a keyboard event, and the object can take an appropriate action, like
moving in the direction indicated. | hope you get the idea. For each object you design you
can indicate actions for various events, in this way defining the behavior of the object.

Once you have defined your objectsiit is time to define the roomsin which they will live.
Rooms can be used for levels in your game or to check out different places. There are
actions to move from one room to another. Rooms first of al have a background. This
can be a simple color or an image. Such background images can be created in Game
Maker or you can load them from files. (The background can do alot of things but for the
time being, just consider it as something that makes the rooms look nice.) Next you can
place the objects in the room. You can place multiple instances of the same object in a
room. So, for example, you need to define just one wall object and can use it a many
places. Also you can have multiple instances of the same monster objects, as long as they
should have the same behavior.

10

Now you are ready to run the game. The first room will be shown and objects will come
to life because of the actions in their creation events. They will start reacting to each other
due to actions in collision events and they can react to the player using the actions in their
keyboard or mouse events.

So in summary, the following things (often called resources) play a crucia role:
- objects which are the true entities in the game
rooms the places (levels) in which the objects live
sprites: (animated) images that are used to represent the objects
sounds: these an be used in games, either as background music or as effects
backgrounds: the images used as background for the rooms

There are actually a number of other types of resources: paths, scripts, data files, and time
lines. These are important for more complicated games. You will only see them when
you run Game Maker in advanced mode. They will be treated in the advanced chapters
later in this document.

11

Chapter 5 Let us look at an example

It is good to first have alook at how to make a very smple example. We assume here that
you run Game Maker in smple mode. The first step is to describe the game we want to
make. (You should always do this first; it will save you a lot of work later.) The game
will be very simple: There is a ball that is bouncing around between some walls. The
player should try to click on the ball with the mouse. Each time he succeeds he gets a
point.

As can be seen we will require two different objects: the ball and the wall. We will aso
need two different sprites: one for the wall object and one for the ball object. Finally, we
want to hear some sound when we succeed in clicking on the ball with the mouse. We
will just use one room in which the game takes place. (If you don't want to make the
game yoursdlf you can load it from the Exanpl es folder under the name t ouch t he
bal | . gnd.)

Let us first make the sprites. From the Add menu select Add Sprite (you can also use the
appropriate button on the toolbar). A form will open. In the Name field type “wall”.
Select the Load Sprite button and choose an appropriate image. That is al and you can
close the form. In the same way, create a ball sprite.

Next we make the sound. From the Add menu select Add Sound. A different form
opens. Give the sound a name and choose Load Sound. Pick something appropriate and
check whether it is indeed a nice sound by pressing the play button. If you are satisfied,
close the form.

The next step is to create the two objects. Let us first make the wall object. Again from
the Add menu choose Add Object. A form will open that looks quite a bit more complex
than the ones we saw so far. At the left there is some global information about the object.
Give the object an appropriate name and from the drop down menu pick the correct wall
sprite. Because a wall is solid you should check the box labeled Solid. That is al for the
moment. Again create a new object, name it ball, ad give it the ball sprite. We don’t
make the ball solid. For the ball we need to define some behavior. In the middle you see
an empty list of events. Below it there is a button labeled Add Event. Pressit and you
will see al possible events. Select the creation event. This is now added to the list of
events. At the far right you see all the possible actions, in a number of groups. From the
move group choose the action with the 8 red arrows and drag it to the action list in the
middle. This action will make the object move in a particular direction. Once you drop it
in the action list a dialog pops up in which you can indicate the direction of motion.
Select al the 8 arrows to choose a random direction. Y ou can leave the speed as 8. Now
close the dialog. So now the ball will start moving at the moment it is created. Secondly
we have to define what should happen in the case of a collison event with the wall.
Again press Add Event. Click on the button for collison events and in the drop down
menu select thewall object. For this event we need the bounce action. (Y ou can see what
each action does by holding the mouse still above it.) Finally we need to define what to
do when the user presses the left mouse button on the ball. Add the corresponding event

12

and select the left mouse button from the pop-up menu. For this event we need a few
actions. one to play a sound (can be found in the group of mainl actions) and one to
change the score (in the group score) and two more to move the ball to a new random
position and moving in a new direction (in the same way as in the creation event). For the
sound action, select the correct sound. For the score action, type in avalue of 1 and check
the Relative box. This means that 1 is added to the current score. (If you make a mistake
you can double click the action to change its settings.)

Our objects are now ready. What remains is to define the room. Add a new room to the
game, again from the Add menu. At the right you see the empty room. At the left you
find some tabs, one for setting the background, one for setting some global properties like
the width and height of the room and one were you can add instances to the room. At the
bottom you can select an object in the pop-up menu. By clicking in the room you can
place instances of that object there. You can remove instances using the right mouse
button. Create a nice boundary around the room using the wall object. Finally place 1 or 2
ball objects in the room. Our game is ready.

Now it istime to test our game. Press the Run button and see what happens. If you made
no mistakes the ball starts moving around. Try clicking on it with the mouse and see what

happens. Y ou can stop the game by pressing the <Esc> key. You can now make further
changes.

Congratulations. You made your first little game. But | think it is now time to learn a bit
more about Game Maker .

13

Chapter 6 The global user interface
When you start Game Maker the following form is shown:

= Game Maker Simple: <new game>
File Edit Add Run ‘Window Help

UBH bSO 0E 0@

) Sprites

I Sounds

{1 Backgrounds
|1 Objects

[y Rooms

li] Game Information
i'l Game Options

(Actually, this is what you see when you run Game Maker in simple mode. In advanced
mode a number of additioral items are shown. See Chapter 14 for details.) At the left you
see the different resources, mention above: Sprites, Sounds, Backgrounds, Objects,
Rooms and two more: Game Information and Game Options. At the top there is the well-
known menu and toolbar. In this chapter | will describe briefly the various menu items,
buttons, etc. In the later chapters we discuss a number of them in detail. Note that many
things can be achieved in different ways. by choosing a command from the menu, by
clicking a button, or by right clicking on aresource.

6.1 File menu

In the file menu you can find some of the usual commands to load and save files, plus a
few special ones:

- New. Choose this command to start creating a new game. If the current game was
changed you are asked whether you want to save it. There is also a toolbar button
for this.

Open. Opens a game file. Game Maker files have the extension .gmd. There is a
toolbar button for this command. You can also open a game by dragging the file
to the Game Maker window.

Recent Files. Use this submenu to reopen game files your recently opened.

Save. Saves the game design file under its current name. If no name was specified
before, you are asked for a new name. You can only use this command when the
file was changed. Again, there is atoolbar button for this.

14

Save As. Saves the game design file under a different name. You are asked for a
new name.

Create Executable. Once your game is ready you probably want to give it to
others to play. Using this command you can create a stand-alone version of your
game. This is smply an executable that you can give to other people to run. You
will find more information on distributing gamesin Chapter 14.

Advanced Mode. When clicking on this command Game Maker will switch
between simple and advanced mode. In advanced mode additional commards and
resources are available.

Exit. Probably obvious. Press this to exit Game Maker. If you changed the current
game you will be asked whether you want to saveit.

6.2 Edit menu

The edit menu contains a number of commands that relate to the currently selected
resource (object, sprite, sound, etc.). Depending on the type of resource some of the
commands might not be available.

- Insert resource. Insert a new instance of the currently selected type of resource
before the current one. A form will open in which you can change the properties
of the resource. Thiswill be treated in detail in the following chapters.

Duplicate. Makes a copy of the current resource and adds it. A form is opened in
which you can change the resource.
Delete. Deletes the currently selected resource (or group of resources). Be careful.
This cannot be undone. Y ou will though be warned.
Rename. Give the resource a new name. This can aso be done in the property
form for the resource. Also you can select the resource and then click on the
name.
Properties. Use this command to bring up the form to edit the properties. Note
that al the property forms appear within the main form. You can edit many of
them at the same time. Y ou can also edit the properties by double clicking on the
resource.
Note that al these commands can also be given in a different way. Right-click on a
resource or resource group, and the appropriate pop-up menu will appear.

6.3 Add menu

In this menu you can add new resources of each of the different types. Note that for each
of them there is also a button on the toolbar and a keyboard shortcut.

6.4 Window menu
In this menu you find some of the usua commands to manage the different property
windows in the main form:

- Cascade. Cascade al the windows such that each of them is partially visible.
Arrange Icons. Arrange all the iconified property windows. (Useful in particular
when resizing the main form.)

Close All. Close dl the property windows, asking the user whether or not to save
the changes made.

15

6.5

Help menu

Here you find some commands to help you:

6.6

Contents. Here you can access the on-line version of this document.

How to use help. In case you do not know, some help on using help.
Registration. Even though Game Maker can be used for free, you are encouraged
to register the program. It will remove the nag screen that sometimes occur and
will help the further development of the program. Here you can find information
on how to register the program If you did register it you can use this to enter the
registration key you receive.

Web site. Connects you to the Game Maker website where you can find
information about the most recent version of Game Maker and collections of
games and resources for Game Maker. | recommend that you check out the site at
least once a month for new information.

Forum. Connects you to the Game Maker forum where many people will help
you with your questions.

About Game Maker. Give some short information about this version of Game
Maker.

The resource explorer

At the left of the main form you find the resource explorer. Here you will see a tree-like
view of al resources in your game. It works in the same way as the windows explorer
and you are most likely familiar with it. If an item has a+ sign in front of it you can click
on the sign to see the resources inside it. By clicking on the — sign these disappear again.
You can change a name of a resource (except the top level ones) by selecting it (with a
single click) and then clicking on the name. Double click on resource to edit its
properties. Use the right mouse button to access the same commands as in the Edit menu.
You can change the order of the resources by clicking on them with the mouse and
holding the mouse button pressed. Now you can drag the resource to the appropriate
place. (Of course the place must be correct. You e.g. cannot drag a sound into the list of
sprites.)

16

Chapter 7 Defining sprites

Sprites are the visua representations of all the objects in the game. A sprite is either a
single image, drawn with any drawing program you like, or a set of images that, when
played one of the other, looks like an animated motion. For example, the following four
images form a sprite for a Pacman moving to the right.

@ G G G

image image 1 image & image 3

When you make a game you normally start by collecting a set of nice sprites for the
objects in your game. Many collections of interesting sprites can be found on the Game
Maker website. Other sprites can be found on the web, normally in the form of animated
gif files.

To add a gsprite, choose the item Add Sprite from the Add menu, or use the
corresponding button on the toolbar. The following form will pop up.

B Sprite Properties E@E}

Name: |zprite0 n

..

Width: 32 Height: 32
Mumber of zubimages: 4

Show: 0 ﬂ

<0 Edit Sprite |

[v Transparent

&' OK

At the top you can indicate the name of the sprite. All sprites (and all other resources)
have a name. You best give each sprite a descriptive name. Make sure all resources get
different names. Even though thisis not strictly required, you are strongly advised to only
use letters and digits and the underscore symbol () in a name of a sprite (and any other
resource) and to let is start with a letter. In particular don’'t use the space character. This
will become important once you start using code.

To load a sprite, click on the button Load Sprite. A stardard file dialog opens in which

you can indicate the sprite. Game Maker can load many different graphics files. When
you load an animated gif, the different sub-images form the sprite images. Once the sprite

17

is loaded the first sub-image is shown on the right. When there are multiple sub-images,
you can cycle through them using the arrow buttons.

The checkbox labeled Transparent indicates whether the background should be
considered as being transparent. Most sprites are transparent. The background is
determined by the color of the leftmost bottommost pixel of the image. So make sure that
no pixel of the actual image has this color. (Note that gif files often define their own
transparency color. This color is not used in Game Maker.)

With the button Edit Sprite you can edit the sprite, or even create a completely new
sprite. For more information on creating and changing sprites, see Chapter 14.

18

Chapter 8 Sounds and music

Most games have certain sound effects and some background music. Many useful sound
effects can be found on the Game Maker website. Many more can be found on other
places on the web.

To add a sound resource to your game, use the item Add Sound in the Add menu or use
the corresponding button on the toolbar. The following form will pop up.

‘Y Sound Pr... g|§|g|

Marne: |s-:uunu:|[l

b Save Sound

Kind: "wave
Time: 91 mzec.

|

+" 0K

To load a sound, press the button labeled Load Sound. A file selector dialog pops up in
which you can select the sound file. There are two types of sound files, wave files and
midi files. (For information on mp3 files e Chapter 17.) Wave files are used for short
sound effects. They use a lot of memory but play instantaneoudly. Use these for al the
sound effects in your game. Midi files describe music in a different way. As aresult they
use a lot less memory, but they are limited to instrumental background music. Also, only
one midi sound can play at any time.

Once you load a music file its kind and length are shown. You can listen to the sound

using the play button. There is also a button Save Sound to save the current sound to a
file. This button is not really required but you might need if you lost the original sound.

19

Chapter 9 Backgrounds

The third type of basic resources is backgrounds. Backgrounds are usually large images
that ae used as backgrounds (or foregrounds) for the rooms in which the game takes
place. Often background images are made in such away that they can tile an area without
visual cracks. In this way you can fill the background with some pattern. A number of
such tiling backgrounds can be found on the Game Maker website. Many more can be

found at other places on the web.

To add a background resource to your game, use the item Add Background in the Add
menu or use the corresponding button on the toolbar. The following form will pop up.

= Backeround Properties E]E| [E]

Mame: Jbackgruundﬂ

Yidth: 80 Height: 80

[Transparent

+sw Edit Background |

w" OK

Press the button L oad Background to load a background image. Game Maker supports
many image formats. Background images cannot be animated! The checkbox
Transparent indicates whether or not the background is partially transparent. Most
backgrounds are not transparent so the default is not. As transparency color the color of

the leftmost bottommost pixel is used.

Y ou can change the background or create a new one using the button Edit Background.
For more information, see Chapter 18.

20

Chapter 10 Defining objects

With the resources you have seen so far you can add some nice images and sounds to the
game, but they don’t do anything. We now come to the most important resource of Game
Maker, the objects. Objects are entities in the game that do things. They most of the time
have a sprite as a graphical representation such that you see them. They have behavior
because they can react to certain events. All things you see in the game (except for the
background) are objects. (Or to be more precise, they are instances of objects.) The
characters, the monsters, the balls, the walls, etc. are all objects. There might aso be
certain objects that you don’t see but that control certain aspects of the game play.

Please redlize the difference between sprites and objects. Sprites are just (animated)
images that don’t have any behavior. Objects normally have a sprite to represent them but
objects have behavior. Without objects there is no game!

Also redlize the difference between objects and instances. An object described a certain
entity, e.g. a monster. There can be multiple instances of this object in the game. When
we talk about an instance we mean one particular instance of the object. When we talk
about an object we mean all the instances of this object.

To add an object to your game, choose Add Object from the Add menu. The following
form will appear:

=

0 ob ject Properties

Marme; IﬂhiECtD Events: Actions:

Spite: |<nospite> &

[Sold

[v Yizible

s e [M
== EE EE

o

E
wd

I
o
1]
0

Add Event |

l apoa [aI00s l AEID [|0AIIaD l FuEL l Lu!em| anni

=] (5]

Delete | Ehange|

This is rather complex. At the left there is some genera information about the object. In
the middle there is the list of events that can happen to the object. See the next chapter for
details. At the right there are the different actions the object can perform. These will be
treated in Chapter 12.

21

As aways, you @n (and should) give your object a name. Next you can indicate the
sprite for the object. To this end, click with the left mouse button on the sprite box or the
menu button next to it. A menu will pop up with al the available sprites. Select the one
you want to use for the object. Below this there are two check boxes. The box labeled
Solid indicates whether this is a solid object (like a wall). Collisions with solid objects
are treated differently from collisions with non-solid objects. See the next chapter for
more information. Visible indicates whether instances of this object are visible. Clearly,
most objects are visible, but sometimes it is useful to have invisible objects. For example,
you can use them for waypoints for a moving monster. Invisible objects will react to
events and other instances do collide with them.

22

Chapter 11 Events

Game Maker uses what is called an event driven approach. This works as follows.
Whenever something happens in the game the instances of the objects get events (kind of
messages telling that something has happened). The instances can then react to these
messages by executing certain actions. For each object you must indicate to which events
it responds and what actions it must perform when the event occurs. This may sound
complicated but is actually very easy. First of all, for most events the object does not
have to do anything. For the events where something must be done you can use a very
simple drag-and-drop approach to indicate the actions.

In the middle of the object property form thereisalist of events to which the object must
react. Initialy it is empty. You can add events to it by pressing the button labeled Add
Event. A form will appear will al different types of events. Here you select the event you
want to add. Sometimes a menu pops up with extra choices. For example, for the
keyboard event you must select the key. Below you find a complete list of the different
events plus descriptions. One event in the list will be selected. This is the event we are
currently changing. Y ou can change the selected event by clicking on it. At the right there
are al the actions represented by little icons. They are grouped in a number of tabbed
pages. In the next chapter you will find descriptions of all the actions and what they do.
Between the events and the actions there is the action list. This list contains the actions
that must be performed for the current event. To add actions to the list, drag them with
your mouse from the right to the list. They will be placed below each other, with a short
description. For each action you will be asked to provide a few parameters. These will
also be described in the next chapter. So after adding a few actions the situation will look
as follows:

Events: Actions:

"' Create %I Start moving in a direction

s <Lefts :
[press <Le ; Set the gravity

Set the friction
Ssl Flay zound click

'§§| prezs <Right:

Add Ewvent

Delete Change

Now you can start adding actions to another evert. Click on the correct event with the left
mouse button to select it and drag actiors in the list.

23

Y ou can change the order of the actionsin the list again using drag-and-drop. If you hold
the <Ctrl> key while dragging, you make a copy of the action. You can even use drag
and-drop between action lists for different objects. When you click with the right mouse
button on an action, a menu appears in which you can delete the action (can also be done
by using the key) or copy and paste actions. When you hold your mouse at rest
above an action, alonger description is given of the action. See the next chapter for more
information on actions.

To delete the currently selected event together with all its actions press the button labeled
Delete. (Events without any actions will automatically be deleted when you close the
form so there is no need to delete them manually.) If you want to assign the actions to a
different event (for example, because you decided to use a different key for them) press
the button labeled Change and pick the new event you want. (The event should not be
defined already!)

As indicated above, to add an event, press the button Add Event. The following form
pops up:

Event Selector [
y Create J‘_‘}. Mouse
j',J Destroy @ Other
23 Alarmn W Draw
ﬁ Step ‘% k.ey Prezs
g=b Collizsion 3 Key Beleass
s Keyboard 2 Cancel

Here you sdlect the event you want to add. Sometimes a menu pops up with extra
choices. Here is a description of the various events. (Again remember that you normally
use only afew of them.)

u Createevent
This event happens when an instance of the object is created. It is normally used to set the
instance in motion and/or to set certain variables for the instance.

2 Destroy event

This event happens when the instance is destroyed. To be precise, it happens just before it
is destroyed, so the instance does still exist when the event is executed! Most of the time
this event is not used but you can e.g. use it to change the score or to create some other
object.

2 Alarm events

Each instance has 8 alarm clocks. You can set these alarm clocks using certain actions
(see next chapter). The aarm clock then ticks down until it reaches 0 at which moment

24

the alarm event is generated. To indicate the actions for a given alarm clock, you first
need to sdlect it in the menu. Alarm clocks are very useful. You can use them to let
certain things happen from time to time. For example a monster can change its direction
of motion every 20 steps. (In such cases one of the actions in the event must set the alarm
clock again.)

* Step events

The step event happens every step of the game. Here you can put actions that need to be
executed continuously. For example, if one object should follow another, here you can
adapt the direction of motion towards the object we are following. Be careful with this
event though. Don't put many complicated actions in the step event of objects of which
there are many instances. This might slow the game down. To be more precise, there are
three different step events. Normally you only need the default one. But using the menu
you can also select the begin step event and the end step event. The begin step event is
executed at the beginning of each step, before any other events take place. The normal
step event is executed just before the instances are put in their new positions. The end
step event is executed at the end of the step, just before the drawing. This is typicaly
used for e.g. changing the sprite depending on the current direction.

& Collision events

Whenever two instances collide (that is, their sprites overlap) a collision event appears.
WEéll, to be precise two collision event occur; one for each instance. The instance can
react to this collision event. To this end, from the menu select the object with which you
want to define the collision event. Next you place the actions here.

There is a difference in what happens when the instance collides with a solid object or a
non-solid object. First of all, when there are no actions in the collision event, nothing
happens. The current instance smply keeps on moving; even when the other object is
solid. When the collision event contains actions the following happens:

When the other object is solid, the instance is placed back at its previous place (before the
collison occurs). Then the event is executed. Findly, the instance is moved to its new
position. So if the event e.g. reverses the direction of motion, te instance bounces
against the wall without stopping. If there is still a collision, the instance is kept at its
previous place. So it effectively stops moving.

When the other object is not solid, the instance is not put back. The event is smply
executed with the instance at its current position. Also, there is no second check for a
collision. If you think about it, this is the logical thing that should happen. Because the
object is not solid, we can simply move over it. The event notifies us that this is
happening.

There are many uses for the collision event. Instances can use it to bounce against walls.
Y ou can use it to destroy object when they are e.g. hit by abullet, etc.

== K eyboard events

25

When the player presses a key, a keyboard event happens for al instances of all objects.
There is a different event for each key. In the menu you can pick the key for which you
want to define the keyboard event and next drag actions there. Clearly, only a few objects
need events for only a few keys. You get an event in every step as long as the player
keeps down the key. There are two special keyboard events. One is caled <No key>.
This event happens in each step when no key is pressed. The second one is called <Any
key> and happens whenever some key is pressed. When the player presses multiple keys,
the events for all the keys pressed happen. Note that the keys on the numeric keypad only
produce the corresponding events when <NumLock> is pressed.

" Mouseevents

A mouse event happens for an instance whenever the mouse cursor lies inside the sprite
representing the instance. Depending on which mouse buttons are pressed you get the no
button, left button, right button, or middle button event. The mouse button events are
generated in each step as long as the player keeps the mouse button pressed. The press
events are only generated once when the button is pressed. The release events are only
generated when the button is released. Note that these events only occur when the mouse
is above the instance. If you want to react to mouse press or release events at an arbitrary
place, use the global press and global release events instead. There are two special mouse
events. The mouse enter event happens when the mouse enters the instance. The mouse
leave event happens when the mouse leaves the instance. These events are typically used
to change the image or play some sound. Finaly there are a number of events related to
the joystick. You can indicate actions for the four main directions of the joystick (in a
diagona direction both events happen). Also you can define actions for up to 8 joystick
buttons. Y ou can do this both for the primary joystick and the secondary joystick.

@ Other events
There are a number of other events that can be useful in certain games. They are found in
this menu. The following events can be found here:
Outsde: This event happens when the instance lies completely outside the room.
Thisis typically a good moment to destroy it.
Boundary: This event happens when the instance intersects the boundary of the
room.
Game start: This event happens for all instances in the first room when the game
starts. It happens before the room start event (see below) but after the creation
events for the instances in the room. This event is typicaly defined in only one
"controller" object and is used to start some background music and to initialize
some variables, or load some data.
Game end: The event happens to al instances when the game ends. Agan
typically just one object defines this event. It is for example used to store certain
datain afile.
Room start: This event happens for all instances initialy in a room when the
room starts. It happens after the creation events.
Room end: This event happensto al existing instances when the room ends.

26

No more lives: Game Maker has a built-in lives system. There is an action to set
and change the number of lives. Whenever the number of lives becomes less than
or equal to 0, this event happens. It istypically used to end or restart the game.

No more health: Game Maker has a built-in heath system. There is an action to
set and change the health. Whenever the health becomes less than or equal to 0O,
this event happens. It is typically used to reduce the number of lives or to restart
the game.

End of animation: As indicated above, an animation consists of a number of
images that are shown one after the other. After the last one is shown we start
again with the first one. The event happens at precisely that moment. This can be
used to e.g. change the animation, or destroy the instance.

End of path: This event happens when the instance follows a path and the end of
the path is reached. See Chapter 21 for more information on paths.

User defined: There are eight of these events. They normally never happen unless
you yourself call them from a piece of code.

& Drawing event

Instances, when visible, draw their sprite in each step on the screen. When you specify
actions in the drawing event, the sprite is not drawn, but these actions are executed
instead. This can be used to draw something else than the sprite, or first make some
changes to sprite parameters. There are a number of drawing actions that are especially
meant for use in the drawing event. Note that the drawing event is only executed when
the object is visible. Also note that, independent of what you draw, collision events are
based on the sprite that is associated with the instance.

% K ey pressevents

This event is similar to the keyboard event but it happens only once when the key is
pressed, rather than continuoudly. This is useful when you want an action to happen only
once.

i Key release events
This event is similar to the keyboard event but it happens only once when the key is
released, rather than continuously.

In some situation it is important to understand the order in which Game Maker processes
the events. Thisis as follows:

Begin step events

Alarm events

Keyboard, Key press, and Key release events
Mouse events

Normal step events

(now all instances are set to their new positions)
Collision events

End step events

27

Drawing events

The creation, destroy, and other event are performed when the corresponding things
happen.

28

Chapter 12 Actions

Actions indicate the things that happen in A game created withGame Maker. Actions are
placed in events of objects. Whenever the event takes place these actions are performed,
resulting in certain behavior for the instances of the object. There are a large number of
different actions available and it is important that you understand what they do. In this
chapter | will describe the default actions. Additional actions might become available in
the form of action libraries. These extend the possibilities of Game Maker further. Check
the website for possible additiona action libraries.

All the actiors are found in the tabbed pages at the right of the object property form.
There are seven sets of actions. You get the set you want by clicking on the correct tab.
When you hold you mouse above one of the actions, a short description is shown to
remind youof its function.

Let me briefly repeat: To put an action in an event, just drag it from the tabbed pages to
the action list. You can change the order in the list, again using dragging. Holding the
<Ctrl> key while dragging makes a copy of the action. (You can drag and copy actions
between the lists in different object property forms) Use the right mouse button to
remove actions (or use the key) and to copy and paste actions.

When you drop an action in the action list, a window will pop-up most of the time, in
which you can fill in certain parameters for the action. The parameters will be described
below when describing the actions. Two types of parameters appear in many actions so |
will describe these here. At the top you can indicate to which instance the action applies.
The default is self, which is the instance for which the action is performed. Most of the
time, thisis what you want. In the case of a collision event, you can also specify to apply
the action to the other instance involved in the collision. In this way you can e.g. destroy
the other instance. Finally, you can choose to apply the action to all instances of a
particular object. In this way you can e.g. change al red balls into blue balls. The second
type of parameter is the box labeled Relative. By checking this box, the values you type
in are relative to the current values. For example, in this way you can add something to
the current score, rather than changing the current score to the new vaue. The other
parameters will be described below. You can later change the parameters by double
clicking on the action.

12.1 Move actions

The first set of actions consists of those related to movement of objects. The following
actions exist:

Start moving in a direction

Use this action to start the instance moving in a particular direction. You can indicate the
direction using the arrow keys. Use the middle button to stop the motion. Also you need
to specify the speed of the motion. This speed is given in pixels per step. The default
value is 8. Preferably don’t use negative speeds. You can specify multiple directions. In

29

this case a random choice is made. In this way you can e.g. let a monster start moving
either left or right.

Set direction and speed of motion

This is the second way to specify a motion Here you can indicate a precise direction.
Thisis an angle between 0 and 360 degrees. 0 mean to the right. The direction is counter-
clockwise. So for example 90 indicates an upward direction. If you want an arbitrary
direction, you can typer andon(360) . Asyou will see below the function r andomgives
a random number smaller than the indicated value. As you might have noticed there is a
checkbox labeled Relative. If you check this, the new motion is added to the previous
one. For example, if the instance is moving upwards and you add a bit of motion to the
left, the new motion will be upwards to the left.

" set the horizontal speed

The speed of an instance consists of a horizontal part and a vertical part. With this action
you can change the horizontal speed. A positive horizontal speed means a motion to the
right. A negative one means a motion to the left. The vertical speed will remain the same.
Use relative to increase the horizontal speed (or decrease it by providing a negative
number).

| Set the vertical speed
n

In asimilar way, with this action you can change the vertical speed of the instance.

#" | Move towardsa point

This action gives another way to specify a motion. You indicate a position and a speed
and the instance starts moving with the speed towards the position. (It won’t stop at the
position!) For example, if you want a bullet to fly towards the position of the spaceship
you can use as position spaceshi p. x, spaceshi p.y. (You will learn more about the
use of variables like these below.) If you check the Relative box, you specify the position
relative to the current position of the instance. (The speed is not taken relative!)

& Set a path for the instance

(Only available in advanced mode.) With this action you can indicate that the instance
should follow a particular path. Y ou indicate the path, the speed and the position in the
path where to start (O=beginning, 1=end). See Chapter 21 for more information on paths.

+

¥ | Set the gravity

With this action you can create gravity for this particular object. Y ou specify a direction
(angle between 0 and 360 degrees) and a speed, and in each step this amount of speed in
the given direction is added to the current motion of the object instance. Normally you
need a very small speed increment (like 0.01). Typically you want a downward direction
(270 degrees). If you check the Relative box you increase the gravity speed and

30

direction. Note that, contrary to rea life, different object can have different gravity
directions.

¥*] Set thefriction

Friction slows down the instances when they move. You specify the amount of friction.
In each step this amount is subtracted from the speed until the speed becomes O.
Normally you want a very small number here (like 0.01).

=71 Jump to a given position

Using this action you can place the instance in a particular position. You simply specify
the x- and y-coordinate, and the instance is placed with its reference point on that
position. If you check the Relative box, the position is relative to the current position of
the instance. This action is often used to continuously move an instance. In each step we
increment the position abit.

&4 Jump to the start position
This action places the instance back at the position where it was created.

41 Jump to a random position

This action moves the instance © a random position in the room. Only positiors are
chosen where the instance does not intersect any solid instance. You can specify the
snapping used. If you specify positive values, the coordinates chosen with be integer
multiples of the indicated values. This can be used to e.g. keep the instance aligned with
the cells in your game (if any). You can specify a separate horizontal snapping and
vertical snapping.

il Snap to grid

With this action you can round the position of the instance to a grid. You can indicate
both the horizontal and vertical snapping value (that is, the sized of the cells of the grid).
This can be very useful to make sure that instances stay on a grid.

= Reverse horizontal direction
With this action you reverse the horizontal motion of the instance. This can for example
be used when the object collides with a vertical wall.

d. Reverse vertical direction
With this action you reverse the vertical motion of the instance. This can for example be
used when the object collides with a horizontal wall.

- Move to contact position

With this action you can move the instance in a given direction until a contact position
with an object is reached. If there already is a collision at the current position the instance
is not moved. Otherwise, the instance is placed just before a collison occurs. You can

31

gpecify the direction but also a maxima distance to move. For example, when the
instance is falling you can move a maximal distance down until an object is encountered.
You can also indicate whether to consider solid object only or al objects. You typically
put this action in the collision event to make sure that the instance stops in contact with
the other instance involved in the collision.

K Bounce against objects

When you put this action in the collision event with some object, the instance bounces
back from this object in a natural way. If you set the parameter precise to fase, only
horizontal and vertical walls are treated correctly. When you set precise to true also
danted (and even curved) walls are treated satisfactory. This is though slower. Also you
can indicate whether to bounce only from solid objects or from all objects. Please redlize
that the bounce is not completely correct because this depends on many properties. But in
many situations the effect is good enough.

12.2 Main actions, set 1

The following set of actions deas with creating, changing, and destroying instances of
objects, with sounds, and with rooms.

¢ | Create an instance of an object

With this action you can create an instance of an object. You specify which object to
create and the position for the new instance. If you check the Relative box, the position is
relative to the position of the current instance. Creating instances during the game is
extremely useful. A space ship can create bullets; a bomb can create an explosion, etc. In
many games you will have some controller object that from time to time creates monsters
or other objects. For the newly created instance the creation event is executed.

&

S Changetheinstance

With this action you can change the current instance into an instance of another object.
So for example, you can change an instance of a bomb into an explosion. All settings,
like the notion and the value of variables, will stay the same. You can indicate whether
or not to perform the destroy event for the current object and the creation event for the
new object.

2 Destroy theinstance
With this action you destroy the current instance. The destroy event for the instance is
executed.

Destroy instances at a position

With this action you destroy al instances whose bounding box contains a given position.
This is for example useful when you use an exploding bomb. When you check the
Relative box the position is taken relative to the position of the current instance.

32

Changethe sprite

Use this action to change the sprite for the instance. Y ou indicate the new sprite. You can
also indicate a scaling factor. A factor of 1 means that the sprite is not scaled. The scaling
factor must be larger than 0. Please redlize that scaling the sprite will dow down the
drawing. Changing spritesis an important feature. For example, often you want to change
the sprite of a character depending on the direction in which it walks. This can be
achieved by making different sprites for each of the (four) directions. Within the
keyboard events for the arrow keys you set the direction of motion and the sprite.

2 Play a sound

With this action you play one of the sound resources you added to your game. Y ou can
indicate the sound you want to play and whether it should play once (the default) or loop
continuously. Multiple wave sounds can play at once but only one midi sound can play.
So if you start a midi sound, the current midi sound is stopped. Unless the sound has
multiple buffers (see Chapter 17) only one instance of each sound can play. So if the
same sound is aready playing it is stopped and restarted.

® Stop a sound
This action stops the indicated sound. If multiple instances of this sound are playing all
are stopped.

If a sound is playing

If the indicated sound is playing the next action is performed. Otherwise it is skipped.
You can select Not to indicate that the next action should be performed if the indicated
sound is not playing. For example, you can check whether some background music is
playing and, if not, start some new background music. For more information on actions
that test certain questions, see Section Error! Reference sour ce not found..

I Goto previous room

Move to the previous room. You can indicate the type of transition effect between the
rooms. You best experiment to see what works nice for you. If you are in the first room
you get an error.

03 Go to next room
Move to the next room. Y ou can indicate the transition.

Lol Restart the current room
The current room is restarted. Y ou indicate the transition effect.

9| Go to a different room
With this action can go to a particular room. You indicate the room and the transition
effect.

33

If previousroom exists
This action tests whether the previous room exists. If so, the next action is executed. Y ou
normally need this test before moving to the previous room.

. If next room exists
This action tests whether the next room exists. |If so, the next action is executed. You
normally need this test before moving to the next room.

12.3 Main actions, set 2

Here are some more main actions, dealing with timing, giving messages to the user, and
dealing with the game as a whole.

I set an alarm dlock

With this action you can set one of the eight alarm clocks for the instance. Y ou indicate
the number of steps and the alarm clock. After the indicated number of steps, the instance
will receive the corresponding alarm event. You can also increase or decrease the value
by checking the Relative box. If you set the darm clock to a value less than or equal to O
you switch it off, so the event is not generated.

FZz

Sleep for awhile

With this action you can freeze the scene for a particular time. This is typically used at
the beginning or end of a level or when you give the player some message. You specify
the number of milliseconds to sleep. Also you can indicate whether the screen should first
be redrawn to reflect the most recent situation.

28 Set atimeline
(Only available in advanced mode.) With this action you set the particular time line for an
instance of an object. You indicate the time line and the starting position within the time
line (0 is the beginning). You can aso use this action to end a time line by choosing No
Time Line as value.

73 Set thetimeline position

(Only available in advanced mode.) With this action you can change the position in the
current time line (either absolute or relative). This can be used to skip certain parts of the
time line or to repeat certain parts. For example, if you want to make a looping time line,
a the last moment, add this action to set the position back to 0. You can aso use it to
wait for something to happen. Just add the test action and, if not true, set the time line
position relative to - 1.

| Display a message
With this action you can display a message in a dialog box. You simply type in the
message. If you use a # symbol in the message text it will be interpreted as a new line

34

character. (Use # to get the # symbol itself.) If the message text starts with a quote or
double quote symbal, it is interpreted as an expression. See below for more information
about expressions. (Note that this action does not work when your game runs in exclusive
mode, see Chapter 26.)

9/ Show the game information

With this action you pop up the game information window. See Chapter 25 for more
information on how to create the game information. (This action does not work when
your game runs in exclusive mode.)

s
E | Restart the game

With this action you restart the game from the beginning.

©) End the game
With this action you end the game.

el Savethe game

With this action you can save the current game status. You specify the filename for
saving (the file is created in the working directory for the game). Later the game can be
loaded with the next action.

=) L oad the game

Load the game status from afile. You specify the file name. Make sure the saved game is
for the same game and created with the same version of Game Maker. Otherwise an error
will occur. (To be precise, the game is loaded at the end of the current step. So some
actions after this one are still executed in the current game, not the loaded one!)

12.4 Control

There are a number of actions with which you can control which other actions are
performed. Most of these actions ask a question, for example whether a position is empty.
When the answer is yes (true) the next action is executed, otherwise it is skipped. If you
want multiple actions to be executed or skipped based on the outcome you can put them
in ablock by putting start block and end block actions around them. There can also be an
else part which is executed when the answer is no. So a question typically looks as
follows:

35

Events: Actions:

If & pogition is collizion free

& Start of a block

Start moving in a direction

S End of a block

@ Elze

& Start of a black

"aﬂ’} press <Right:

f:}% Jump o a given pozition

H

S End of a block

Add Ewvent

Delete Change

Here the question is asked whether a position for the current instance is collision free. If
S0, the instance starts moving in a given direction. If not, the instance jumps to a given
position.

For all questions there is a field labeled NOT. If you check this field, the result of the
guestion is reversed. That is, if the result was true it becomes false and if it was false, it
becomes true. This alows you to perform certain actions when a question is not true.

For many questions you can indicate that they should apply to al instances of a particular
object. In this case the result is true only if it is true for al instances of the object. For
example, you can check whether for all balls the position dightly to the right is collision
free.

The following questions and related actions are available. (Note that they all have a
differently shaped icon and a different background color such that they can more easily
be distinguished from other actions.)

If a position iscollision free

This questionreturns true if the current instance, placed at the indicated position does not
generate a collision with an object. You can specify the position either absolute or
relative. Y ou can also indicate whether only solid objects should be taken into account or
all objects should be taken into account. This action is typically used to check whether
the instance can move to a particular position.

If thereisa collision at a position

This is the reverse of the previous action. It returns true if there is a collision when the
current instance is placed at the given position (again, either only with solid objects or
with al objects).

36

@ If thereisan object at a position
This question returns true if the instance placed at the indicate position meets an instance
of the indicated object.

If the number of instancesisa value

Y ou specify an object and a number. If the current number of instances of the object is
equa to the number the question returns true. Otherwise it returns false. You can aso
indicate that the check should be whether the number of instances is smaller than the
given value or larger than the given value. This is typicaly used to check whether all
instances of a particular type are gone. Thisis often the moment to end a level or a game.

If adicelandson one

Y ou specify the number of sides of the dice. Then if the dice lands on one, the result is
true and the next action is performed. This can be used to put an element of randomness
in your game. For example, in each step you can generate with a particular chance a
bomb or change direction. The larger the number of sides of the dice is, the smaller the
chance. Y ou can actually use real numbers. For example if you set the number of sidesto
1.5 the next action is performed two out of three times. Using a number smaller than 1
makes no sense.

If the user answersyesto a question

Y ou specify a question. A dialog is shown to the player with a yes and a no button. The
result is true is the player answers yes. This action cannot be used in exclusive mode; the
answer will then always be yes.

If an expression istrue

This is the most general question action. You can enter an arbitrary expression. If the
expression evaluates to true (that is, a number larger or equal to 0.5) the next action is
performed. See below for more information on expressions.

If a mouse button is pressed

Returns true if the indicated mouse button is pressed. A standard use is in the step event.
You can check whether a mouse button is pressed and, if so, for example move to that
position (use the jump to a point action with values nouse_x and nouse_y).

If instanceisaligned with grid

Returns true if the position of the instance lies on a grid. You specify the horizontal and
vertical spacing of the grid. This is very useful when certain actions, like making a turn,
are only allowed when the instance is on a grid position.

@ Else

37

Behind this action the else part follows, that is executed when the result of the question is
fase.

<2 Start of block
Indicates the start of a block of actions.

v End of block
Indicates the end of ablock of actions.

A Repeat next action
This action is used to repeat the rext action (or block of actions) a number of times. You
simply indicate the number.

) Exit the current event

When this action is encountered no further action in this event are executed. This is
typically used after a question. For example, when a position is free nothing needs to be
done so we exit the event. In this example, the following actions are only executed when
thereisacollision.

12,5 Drawing actions

Drawing actions only make sense in the drawing event. At other places they are basically
ignored. Please remember that drawing things other than sprites and background images
isrelatively slow. So use this only when strictly necessary.

J Draw a spriteimage

You specify the sprite, the position (either absolute or relative to the current instance
position) and the sub-image of the sprite. (The sub-images are number from 0 upwards.)
If you want to draw the current sub-image, use number —1.

*|Draw a background image
You indicate the background image, the position (absolute or relative) and whether the
image should betiled al over the room or not.

N Draw arectangle
Y ou specify the coordinates of the two opposite corners of the rectangle; either absolute
or relative to the current instance position.

@ Draw an €llipse
You specify the coordinates of the two opposite corners of the surrounding rectangle;
either absolute or relative to the current instance position.

/ Draw aline

38

Y ou specify the coordinates of the two endpoints of the line; either absolute or relative to
the current instance position.

A Draw a text

You specify the text and the position. A # symbol in the text is interpreted as going to a
new line. (Use \# to get the # symbol itself.) So you can create multi-line texts. If the text
starts with a quote or a double quote, it is interpreted as an expression. For example, you
can use

"Xo '+ string(x)

to display the value of the x-coordinate of the instance. (The variable x stores the current
x-coordinate. The function string() turns this number into a string. + combines the two
strings.)

“>| Set the colors
Lets you set the color used to fill the rectangles and €ellipses and the color used for the
lines around the rectangle and ellipse and when drawing aline.

IT| set afont for drawing text
Y ou can set the font that is from this moment on used for drawing text.

= Change fullscreen mode

With this action you can change the screen mode from windowed to fullscreen and back.
You can indicate whether to toggle the mode or whether to go to windowed or fullscreen
mode. (This does not work in exclusive mode.)

12.6 Score actions

In most games the player will have a certain score. Also many games give the player a
number of lives. Finally, often the player has a certain health. The following actions make
it easy to deal with the score, lives, and health of the player.

27| Set the score

Game Maker has a built-in score mechanism. The score is normally displayed in the
window caption. You can use this action to change the score. You simply provide the
new value for the score. Often you want to add something to the score. In this case don't
forget the check the Relative box.

Ifscorehasavalue

With this question action you can check whether the score has reached a particular value.
You indicate the value and whether the score should be equal to that value, be smaller
than the value or be larger than the value.

39

> | Draw the value of score

With this action you can draw the value of the score at a particular position on the screen.
Y ou provide the positions and the caption that must be placed in front of the score. The
score is drawn in the current font. This action can only be used in the drawing event of an

object.

e Clear the highscoretable
This action clears the highscore table.

1=

el —

z—| Display the highscoretable

For each game the top ten scores are maintained. This action displays the highscore list. If
the current score is among the top ten, the new score is inserted and the player can type
his or her name. So you should not first add the score with the previous action. You can
indicate what background image to use, whether the window should have a border, what
the color for the new entry and the other entries must be, and which font to use. (This
action does not work in exclusive mode!)

| et the number of lives

Game Maker aso has abuilt-in lives system. With this action you can change the number
of lives left. Normally you set it to some value like 3 at the beginning of the game and
then decrease or increase the number depending on what happens. Don't forget to check
the Relative box if you want to add or subtract from the number of lives. At the moment
the number of lives becomes O (or smaller than 0) a"no more lives' event is generated.

. If livesis avalue
With this question action you can check whether the number of lives has reached a

particular value. You indicate the value and whether the number of lives should be equal
to that value, be smaller than the value or be larger than the value.

?| Draw the number of lives

With this action you can draw the number of lives at a particular position on the screen.
Y ou provide the positions and the caption that must be placed in front of the number of
lives. The number of livesis drawn in the current font. This action can only be used in the
drawing event of an object.

i

* | Draw thelives asimage

Rather than drawing the number of lives left as a number, it is often nicer to use a number
of small images for this. This action does precisely that. Y ou specify the position and the
image and at the indicated position the number of livesis drawn as images. This action
can only be used in the drawing event of an object.

El Set the health

40

Game Maker has a built-in health mechanism. You can use this action to change the
health. A value of 100 is considered full health and O is no health at al. You simply
provide the new value for the heath. Often you want to subtract something from the
health. In this case don't forget the check the Relative box. When the health becomes
smaller or equal to O an out of health event is generated.

. If health isa value

With this question action you can check whether the health has reached a particular value.
Y ou indicate the value and whether the health should be equal to that value, be smaller
than the value or be larger than the value.

[|

Draw the health bar

With this action you can draw the health in the form of a health bar. When the hedlth is
100 the full bar is drawn. When it is O the bar is empty. Y ou indicate the position and size
of the health bar and the color of the bar and the background.

| Set the window caption infor mation

Normally in the window caption the name of the room and the score is displayed. With
this action you can change this. Y ou can indicate whether or not to show the score, lives,
and/or health and what the caption for each of these must be.

12.7 Code related actions
Finally there are a number of actions that primarily deal with code.

P Execute a script

(Only available in advanced mode.) With this action you can execute a script that you
added to the game. Y ou specify the script and the maximal 5 arguments for the script. See
Chapter 21 for more information about scripts.

— | Execute a piece of code

When you add this action, a form shows in which you can type in a piece of code. This
works in exactly the same way as when defining scripts (see Chapter 21). The only
difference is that you can indicate for what instances the piece of code must be executed.
Use the code action for small pieces of code. For longer pieces you are strongly advised
to use scripts.

Set the value of avariable

There are many built-in variables in the game. With this action you can change these.
Also you can create your own variables and assign values to them. Y ou specify the name
of the variable and the new value. When you check the Relative box, the value is added
to the current value of the variable. Please note that this can only be done if the variable
already has a value assigned to it! See below for more information about variables.

41

. If avariable hasavalue

With this action you can check what the value of a particular variable is. If the value of
the variable is equal to the number provided, the question returns true. Otherwise it
returns false. You can aso indicate that the check should be whether the value is smaler
than the given value or larger than the given value. See below for more information about
variables. Actually, you can use this actionalso to compare two expressions.

Draw the value of a variable
With this action you can draw the value of a variable at a particular position on the
screen.

CALL

B2 Call theinherited event
(Only available in advanced mode.) This action is only useful when the object has a
parent object (see Chapter 19). It calls the corresponding event in the parent object.

A Comment
Use this action to add a line of comment to the action list. The line is shown in italic font.
It does not do anything when executing the event. Adding comments helps you remember
what your events are doing.

12.8 Using expressions and variables

In many actions you need to provide values for parameters. Rather than just typing a
number, you can also type a formula, e.g. 32*12. But you can actually type much more
complicated expressions. For example, if you want to double the horizontal speed, you
could set it to 2* hspeed. Here hspeed is a variable indicating the current horizontal
speed of the instance. There are alarge number of other variables that you can use. Some
of the most important ones are:

x the x-coordinate of the instance

y the y-coordinate of the instance

hspeed the horizontal speed (in pixels per step)

vspeed the vertical speed (in pixels per step)

di rect i on the current direction of motion in degrees (0-360)

speed the current speed in this direction

vi si bl e whether the object is visible (1) or invisible (0)

i mage_scal e the amount the image is scaled (1 = not scaled)

i mage_si ngl e this variable indicate which subimage in the current sprite must
be shown; if you set it to —1 (default) you loop through the images, otherwise only
the indicated subimage (starting with number 0) is shown al the time

i mge_speed this variable indicates the speed with which the sub-images are
shown. The default value is 1. If you make this value larger than 1 some sub-
images are skipped to make the animation faster. If you make it smaller than 1 the
animation becomes slower.

scor e the current vaue of the score

42

l'i ves the current number of lives
heal t h the current health (0-100)
nmouse_x x-position of the mouse
nouse_y y-position of the mouse

Y ou can change most of these variables using the set variable action. You can aso define
your own variables by setting them to a value. (Don't use relative, because they don't
exist yet.) Then you can use these variables in expressions. Variables you create are local
to the current instance. That is, each object has its own copy of them. To create a global
variable, put the word global and a dot in front of it.

You can aso refer to the values of variables for other objects by putting the object name
and a dot in front of them. So for example, if you want a ball to move to the place where
the coin is you can set the position to (coi n. x , coi n.y). In the case of a collision
event you can refer to the xcoordinate of the other object as ot her . x. In conditional
expressions you can use comparisons like < (smaller than), >, etc.

In your expressions you can aso use functions. For example, the function r andon{ 10)
gives a random real number below 10. So you can set for example the speed or direction
of motion to a random value. Many more functions exist. For more precise information
on expressions and functions see Chapter 28 and further.

43

Chapter 13 Creating rooms

Now that you have defined the objects with their behavior in the form of events and
actions, it is time to create the rooms or levels in which the game takes place. Any game
will need at least one room. In these rooms we place instances of the objects. Once the
game dstarts the first room is shown and the instances in it come to life because of the
actionsin their creation events.

There are a large number of possibilities when creating rooms. Besides setting a number
of properties and adding the instances of the objects you can add backgrounds, define
views, and add tiles. Most of these options are discusses later in Chapter 20. In this
chapter we will only discuss some basic settings, the addition of instances of objects, and
the setting of background images.

To create a room, choose Add Room from the Add menu. The following form will
appear:

B Room Properties

Object to add with left mouse:

[n::ar_ra-:ing E I
[v [elete underlying
[Clear = Shift
Sort by Sort by
1 | A
il i le Wioda

At the left you will seethree tab pages (five in advanced mode). The objects tab is where
you add instances of objects to the room. In the settings tab you can indicate a number of

settings for the room. In the backgrounds tab you can set background images for the
room.

13.1 Adding instances

At the right in the room design form you see the room. At the start it is empty, with a
gray background.

To add instances to the room, first select the objects tab if this one is not already visible.
Next select the object you want to add by clicking on the button with the menu icon (or
by clicking in the image area at the left). The image of the object appears at the left.
(Note that there is a cross in the image. This indicates how the instances will be aligned
with the grid.) Now click with your left mouse button in the room area at the right. An
instance of the object appears. It will snap to the indicated grid. (Y ou can change the grid
in the settings; see below. If you hold the <Alt> key while placing the instance it is not
aligned to the grid.) With the right mouse button you can remove instances. In this way
you define the contents of the room. If you hold down the nouse button while dragging it
over the room, multiple instances are added or removed.

As you will notice, if you place an instance on top of another one, the origina instance
disappears. Normally this is what you want, but not always. This can be avoided by
unchecking the box labeled Delete underlying at the left. There are three other actions
you can perform using the right mouse button: When you hold the <Ctrl> key while
clicking on an instance with the right mouse button, the bottommost instance at the
position is brought to the top. Holding the <Alt> key will send the topmost instance to the
bottom. This can be used to change the order of overlapping instances. Finaly, holding
the <Shift> key while clicking with the right mouse button will remove al instances at
the position, not just the top one.

There are four useful buttons in the tab at the left. When you press the Clear button all
instances are removed from the room. When you press the Shift button you can shift all
instances over a number of pixels. Use negative numbers to shift them left or up. Thisis
useful when you decided to eg. enlarge the room. (You can also use this to place
instances outside the room, which is sometimes useful.) Finally there are two buttons to
sort the instances by X or by Y coordinate. This is useful when instances partialy
overlap.

13.2 Room setting

Each room has a number of settings that you can change by clicking on the settings tab.
We will only consider the most important ones here.

Each room has a name. Best give t a meaningful name. There also is a caption. This
caption is displayed in the window caption when the game is running. You can set the
width and height of the room (in pixels). Also you can set the speed of the game. Thisis
the number of steps per second. The higher the speed, the smoother the motion is. But
you will need a rather fast computer to run it.

45

At the bottom of the settings tab you can indicate the size of the grid cells used for
aligning objects. By clicking on the button labeled Show you can indicate whether to e.g.
show the grid lines. (You can also indicate here whether to show the backgrounds, etc. It
is sometimes useful to temporarily hide certain aspects of the room.)

13.3 Setting the background

With the tab backgrounds you can set the background image for the room. Actually, you
can specify multiple backgrounds. The tab page looks as follows:

[w Diraw background color

| background color |

[Wizible when room starts

[Foreground image

|<n-:| images El
[w Tile Hor. [w Tile"ert.
&0 o+ |0

Hor. Speed: |0

Wert. Speed: |0

At the top you will see the background color. You can click
on it to change it. The background color is only useful if you
don't use a background image that covers the whole room.
Otherwise, you better uncheck the box labeled Draw
background color because this will be a waste of time.

At the top you see a list of 8 backgrounds. You can define
each of them but most of the time you will need just one or
two. To define a background, first select it in the list. Next
check the box labeled Visible when room starts otherwise
you won't see it. The name of the background will become
bold when it is defined. Now indicate a background image in
the menu. There are a number of settings you can change.
Firgt of al you can indicate whether the background image
should tile the room horizontally and/or vertically. You can
also indicate the position of the background in the room (this
will aso influence the tiling). Finally you can make the
background scrolling by giving it a horizontal or vertica
speed (pixels per step).

There is one more checkbox labeled Foreground image. When you check this box, the
background is actually a foreground, which is drawn on top of everything else rather than
behind it. Clearly such an image should be partially transparent to be of any use.

46

Chapter 14 Distributing your game

With the information in the preceding chapters you can create your games. Once you
have created a nice game you probably want to give it to other people to play. You are
free to distribute your games you create with Game Maker in any way you like. You can
even sell them. See the enclosed license agreement for more information.

There are basically three different ways in which you can distribute you games. The
easiest way isto smply give people the *.gmd file that holds the game. This does though
mean that the other person must have Game Maker. (You are not allowed to distribute
Game Maker with your game but they can freely download it from the website.) Also the
other person can change the game.

The second way is to create a stand-alone executable of the game. This can be achieved
by choosing the item Create Executable in the File menu. You will be asked for the
name of the executable that should contain the game. Indicate a name, pressOK and you
have your stand-alone game that you can give to anyone you like. You can set the icon
for the stand-aone game in the Game Options form. (If your game uses any other files
you should copy them to the folder containing the stand-alone game.) Now you should
give thisfile to the other people (Y ou might want to zip it first.)

The third way is to create an installer. A number of freeware installer programs are

available on the web. Again you first make a stand-alone version and then you use the
installer to create an installation. How to do this depends on the installer you use.

47

Chapter 15 Advanced mode

Up to now we considered the simple features of Game Maker. But there are a lot more
possibilities. To be able to use these you must run Game Maker in advanced mode. This
is easy to change. In the File menu, click on the menu item Advanced mode. (To fully
see the effects you should restart Game Maker or at least save your game and load it
anew.

When you start Game Maker in advanced mode, the following form is shown:

= Game Maker: =new game >
File Edit Add Run ‘Window Help

UAH PO TEE Z@®0 @E & @

71 Sprites

I Sounds

) Backagrounds
i) Paths

71 Scripts

i) Data Files
i) Time Lines
{1 Objects

=) Rooms

,ﬂ Game |nformation
iﬂ Game Options

It contains all that was there in simple mode, but there are a number of additional
resources, buttons, and menu items. Also, as we will see in the chapters that follow the
different resources have additional options. Here we will discuss the additional menu
items.

15.1 File menu

In the file menu you can find the following additional commands:

- Import scripts. Can be used to import useful scripts from files. This will be
discussed in more detail in Chapter 21.
Export scripts. Can be used to save your scripts in afile, to be used by others.
Again see Chapter 21.
Merge Game. With this command you can merge all the resources (sprites,
sounds, objects, rooms, etc.) from another game into the current game. This is
very useful if you want to make parts you want to reuse (e.g. menu systems).
(Note that all resources and instances and tiles will get a new id which might
cause problems if you use these in scripts.) It is your responsibility to make sure

48

that the resources in the two files have different names, otherwise problems might

Ooccur.

Preferences. Here you can set a number of preferences about Game Maker. They
will be remembered between different calls of Game Maker. The following
preferences can be set:

o

o

(0]

Show recently edited games in the file menu. If checked the eight most
recently edited games are shown under the recent files in the file menu.
Load last opened file on startup. If checked when you start Game Maker
the most recently opened file is opened automatically.

K eep backup copies of files. If checked the program saves a backup copy
of your game with the extension ba0-ba9. Y ou can open these games in
Game Maker.

Maximal number of backups. Here you can indicate how many (1-9)
different backup copies should be remembered by the program.

Hide the designer and wait while the game is running. If checked,
when you run the game, the designer window will disappear and come
back when the game is finished.

Run games in secure mode. If checked, any game created with Game
Maker that runs on your machine will not be allowed to execute external
programs or change or delete files at a place different from the game
location. (This is a safeguard against Trojan horses.) Checking this might
make that certain games don't work correctly.

Show the origin and bounding box in the sprite image. If checked, in
the sprite properties form, in the sprite image, the origin and bounding box
for the sprite are indicated.

In object properties, show hints for actions. If checked, in the object
properties form, when you hold your mouse over one of the actions, a
description is shown.

When closing, remove instances outside the room. If checked, the
program warns you when there are instances or tiles outside a room and
lets you remove them.

Show popup at right mouse click in room image. If checked, a right
mouse click in the room will not delete the instance but shows a menu in
which you can, among others, set initialization code.

Remember room settings when closing the form. If checked, a number
of room settings, like whether to show the grid, whether to delete
underlying objects, etc. are remembered when you edit the same room
later.

External sound editors. You can indicate here which external editors to
use for the different sound types. (Note that Game Maker does not have a
built-in sound editor so if you don't specify editors here you cannot edit
the sounds.)

Scripts and code. See Chapter 23 for more information about these
preferences.

Colors. See Chapter 23 for more information about these preferences.

49

o Image editor. Default Game Maker uses a built-in editor for images. If
you have a better other image editing program you can indicate here to use
adifferent program for editing the images.

15.2 Edit menu

In the file menu you can find the following additional commands:
Insert group. Resources can be grouped together. This is very useful when you
make large games. For example, you can put al sounds related to a certain object
in a group, or you can group al objects that are used in a particular level. This
command creates a new group in the currently selected resource type. You will be
asked for a name. Groups can again contain groups, etc. As indicated below you
can drag resources into the groups.
Find Resource. With this command you type in the name of a resource and open
the corresponding property form.
Show Object Information. Using this command you can get an overview of all
objects in the game.

15.3 Add menu
In this menu you can now also add the additional resources. Note that for each of them
there is aso a button on the toolbar and a keyboard shortcut.

50

Chapter 16 More about sprites

Up to now we loaded our sprites from files. It is though also possible to create and in
particular modify them within Game Maker. To do this, open the sprite property window
by double clicking on one of your sprite (or by creating a new one). Now press the button
labeled Edit Sprite. A new form will appear showing al the sub-images that make up the

sprite.

16.1 Editing your sprites
The sprite edit form will ook as follows:

E Sprite Editor

File Edit Transform Images Animation
viDABH Y XRE| e
image 0 image 1 image 2 image 3
Speed: |20
Backaground Calar |
.I.:rames: 4 Siée: 32 x. 32 '.Transpareril.:

At the right you see the different images that make up the sprite. Note that in Game
Maker dl sub-images of a sprite must have the same size. At the left an animation of the
sprite plays. (If you don't see the animation, check the box labeled Show Preview. Below
the preview you can change the speed of the animation and the background color. In this
way you can get an idea of what the animation will look like in the game. (Note that this
speed is only for preview. The speed of the animation during the game depends on the
room speed.)

The sprite editor contains many commands to create and change the sprite. These are al

given through the menus. (For some there are buttons on the toolbar.) Some commands
work on individua images. They require that you first select a sub-image with the mouse.

16.1.1 File menu
The file menu contains a number of commands related to loading and saving sprites.

51

New. Create a new, empty sprite. You must indicate the size of the sprite.
(Remember, al images in a sprite must have the same size.)

Create from file. Create the sprite from afile. Many file types can be used. They
al credae a sprite consisting of a single image, except for animated GIF files that
are split into the sub-images. Please note that the transparency color is the
bottommaost leftmost pixel, not the transparency color in the GIF file.

Add from file. Add an image (or images) from a file to the current sprite. If the
images do not have the same size you can choose were to place them or to stretch
them.

Save as GI F. Saves the sprite as an animated gif.

Saveasstrip. Saves the sprite as a bitmap, with all images next to each other.
Createfrom strip. Allows you to create a sprite from a strip. See below for more
information.

Add from strip. Use this to add images from a strip. See below.

Close saving changes. Closes the form, saving the changes made to the sprite. If
you don't want to save the changes, click on the close button of the window.

16.1.2 Edit menu

The edit menu contains a number of commands that deal with the currently selected
sprite. You can cut it to the clipboard, paste an image from the clipboard, clear the current
sprite, delete it, and move sprites left and right in the sequence. Findly, there is a
command to edit an individual image using the built-in painting program (see below).

16.1.3 Transform menu
In the transform menu you can perform a number of transformations on the images.

Mirror horizontal. Mirrors the images horizontally.

Flip vertical. Flips the images vertically.

Shift. Here you can shift the images an indicated amount horizontally and
verticaly.

Rotate. You can rotate the images 90 degrees, 180 degees, or an arbitrary
amount. In the latter case you can also specify the quality. Experiment to get the
best effects.

Resize Canvas. Here you can change the size of the canvas. Y ou can also indicate
where the old images are placed on the new canvas.

Stretch. Here you can stretch the images into a new size. You can indicate the
scale factor and the quality.

Scale. This command scales the images (but not the image size!). You can
indicate the scale factor, the quality, and the position of the current images in the
scaled ones.

16.1.4 Images menu
In the images menu you can perform a number of operation on the images.

52

Cycle left. Cycles al images one place to the left. This effectively starts the
animation at a different point.

Cycleright. Cycles al images one place to the right.

Black and white. Makes the sprite black and white (does not affect the
transparency color!).

Colorize. Here you can change the color (hue) of the images. Use the dider to
pick the different colors.

Intensity. Here you can change the intensity by providing values for the color
saturation and the lightness of the images.

Fade. Here you specify a color and an amount. The colors in the images are now
faded towards this color.

Transgparency. Here you can indicate a level of screen-door transparency. Thisis
achieved by making a number of pixels transparent.

Blur. By blurring the images the colors are mixed a bit, making it more vague.
The higher the value, the more vague it becomes.

Crop. This makes the images as small as possible. Thisis very useful because the
larger the images, the more video memory Game Maker will use. Y ou might want
to leave alittle border around the images though to avoid transparency problems.

Y ou will have to experiment with these commands to get the sprites you want.

16.1.5 Animation menu

Under the animation menu you can create new animations out of the current animation.
There are many options and you should experiment a bit with them to create the effects
you want. Also don't forget that you can always save an animation and later add it to the
current one. Also you can aways add some empty images and delete unwanted ones. |
will briefly go through the different possibilities.

Set Length. Here you can change the length of your animation. The animation is
repeated enough times to create the number of frames you indicate. (Normally
you want this to be a multiple of the current number of frames.)

Stretch. This command also changes the length of the animation. But this time,
frames are duplicated or removed to get the right number. So if you increase the
number of frames the animation goes sower and if you decrease the number it
goes faster.

Reverse. Wedl, as you could guess this reverses the animation. So it is played
backwards.

Add Reverse. This time the reverse sequence is alded, doubling the number of
frames. This is very useful for making an object go left and right, change color
and return, etc. You sometimes might want to remove the double first and middle
frame that occur.

Tranglation sequence. You can create an animation in which the image dlightly
trandates in each step. You must provide the number of frames and the total
amount to move horizontally and vertically.

53

Rotation sequence. Creates an animation in which the image rotates. You can
either choose clockwise or counterclockwise rotation. Specify the number of
frames and the total angle in degrees (360 is a complete turn). (Y ou might need to
resize the canvas first to make sure the total image remains visible during the
rotation.)

Colorize. Creates an animation that turns the image into a particular color.

Fade to color. Creates an animation that fades the image to a particular color.
Disappear. Makes the image disappear using screen-door transparency.

Shrink. Shrinks the image to nothing. Y ou can indicate the direction.

Grow. Grows the image from nothing.

Flatten. Flattens the image to nothing in a given direction.

Raise. Raises the image from a given direction

Overlay. Overlays the animation with another animation or image in afile.
Morph. Morphs the animation to an animation or image from a file. Note that
morphing works best if the two animations cover the same area of the image.
Otherwise, halfway certain pixels disappear and others suddenly appear.

In particular the last two commands are very powerful. For example, to blow up an
object, add a number of copies and then a number of empty frames. Then overlay it with
an explosion animation. (Make sure the numbers of images match.) Alternatively, morph
it to the explosion. With some practice you can make great sprites.

16.1.6 Strips

As indicated above, sprites are normally either stored as animated gif files or as strips. A
strip is one big bitmap that stores al the images next to each other. The only problem is
that the size of the individual sub-images is not stored in the image. Also, many strip files
available on the web store multiple sprites in one file. For example, in the following piece
of astrip file contains four different animations.

To select individua sprites out of such files, you can choose Create from Strip or Add
from Strip from the File menu. After indicating the appropriate strip image file, the
following form will show:

¥ Loading a strip image

number of images:

]
images per fow: |1
a2

image width;

image height: |22

harizontal cell offzet: |0
wertical cell offzet: |0

horizontal pikel offzet: |0
vertical piel offzet: (0

horizontal geperation: |0

vertical seperation: |0
» Cancel |

v’ OK

At the right you see (part of) the strip image you selected. At the left you can specify a
number of parameters that specify which subimages you are interested in. Note that one
or more rectangles in the image indicate the images you are selecting. The following
parameters can be specified:

Number of images. Thisis the number of images you want to take from the strip.
Images per row. How many images of the ones you want are there per row. For
example, by setting thisto 1 you will select a vertical sequence of images.

Image width. Width of the individual images.

Image height. Height of the individual images.

Horizontal cell offset. If you don't want to select the top- left images, you can set
here how many images should be skipped horizontally.

Vertical cell offset. Here you indicate how many images to skip verticaly.
Horizontal pixel offset. Sometimes there is some additional space at the left top.
Here you indicate this amount (in pixels).

Vertical pixel offset. Vertical amount of extra space.

Horizontal separation. In some strips there are lines or empty space between the
images. Here you can indicate the horizontal amount to kip between the images
(in pixels).

Vertical separation. Vertical amount to skip between the images.

55

Once you selected the correct set of images, press OK to create your sprite. Please
remember that you are only allowed to use images created by others when you have their
permission or when they are freeware.

16.2 Editing individual sub-images

You can aso edit the individual sub-images. To this end select a sub-image and choose
Edit Image from the Image menu. This will open a little built-in painting and imaging
program. Please redlize that this is a limited program that is mainly meant to make small
changes in existing images and not to draw new ones. For that, you better use a full-
blown drawing program and use files (or copy and paste) to put the image into Game
Maker.

& Image Editor

File Edit Text Transform Image

vVivDhE a4+ 3§ H

left right

i

The form shows the image in the middle and a number of basic drawing buttons at the
left. Here you can zoom in and out, draw pixels, lines, rectangles, text, etc. Note that the
color depends on whether you use the left or right mouse button. For some drawing tools
you can set properties (like line width or border visibility). There is a special button to
change all pixels that have one color into another color. This is in particular useful to
change the background color that is used for transparency. On the toolbar there are some
specia buttons to move al pixels in the image in a particular direction. Also you can
indicate whether to show a grid when the image is zoomed (works only with a zoom
factor of at least 4).

56

At the right of the formyou can select the colors to be used (one by the left mouse button
and one by the right button). There are four ways to change the color. First of al you can
click with the mouse button (left or right) in one of the 16 basic colors. Note that there is
a special color box that contains the color of the bottom Ieft pixel of the image that is
used as transparency color if the sprite is transparent. Y ou can use this color to make part
of your image transparent. The second way is to click in the image with the changing
color. Here you choose many more colors. You can hold down the mouse to see the color
you are selecting. Thirdly, you can click with the left mouse in the boxes indicating the
left and right color. A color dialog pops up in which you can select the color. Finally, you
can select the color dropper tool at the left and click on a position in the image to copy
the color there.

In the menus you can finds the same transformation and image changing commands that
are also available in the sprite editor. This time though they only apply to the current
image. (When the sprite has multiple images, commands that change the size, like stretch,
are not available.) You can also save the image as a bitmap file. There are two additional
commands in the | mage menu:

Clear. Clear the image to the left color (which then automatically becomes the
transparency color).

Gradient fill. With this command you can fill the image with a gradualy
changing color (not very useful for making sprites, but it looks nice, and can be
used for backgrounds, which use the same paint program).

Note that there is no mechanism to select parts of the image. Also some fancy drawing
routines are missing. For this you should use a more advanced drawing program (or
simply the paint program that comes with Windows). The easiest way to do this is to use
the copy button to put the image on the clipboard. Now in your painting program, use
paste to get it. Change it and copy it to the clipboard. Now, in Game Maker you can paste
the updated image badk in.

16.3 Advanced sprite settings

In advanced mode, in the sprite properties form there are a number of advanced options
that we will treat here.

First of al there are options related to collision checking. Whenever two instances meet a
collision event is generated. Collisions are checked in the following way. Each sprite has
a bounding box. This box is such that it contains the nontransparent part of all the sub-
images. When the bounding boxes do overlap, it is checked whether two pixels in the
current sub-images of the two sprites overlap. This second operation is expensive and
requires extra memory and preprocessing. So if you are not interested in precise collision
checking for a certain sprite, you should uncheck the box labeled Precise collision
checking. In this case only bounding box checking is performed. You can also change
the bounding box. This is hardly ever required but sometimes you might want to make
the bounding box smaller, such that collisions with some extending parts of the sprite are
not taken into account.

57

Sprites can be stored in two places: video memory and standard memory. Video memory
is normally locate on the graphics card and is faster. So if you have many instances of the
sprite you prefer to store it there. But the amount of video memory is limited, depending
on the graphics card the player has. So you are recommended to store large sprites not in
video memory.

Some sprites you might use only in one or two levels of your game. It is a bit wasteful to
keep these sprites in memory all the time. In this case you can check the box labeled
Load only on use. The sprite is now loaded at the first moment it is required. At the end
of the room it is discarded again to free the memory. For large games with many sprites it
is important to carefully manage which sprites are loaded and which ones are in video
memory. (You can aso load and discard sprites from pieces of code.)

Finally, you can indicate the origin of the sprite. This is the point in the sprite that
corresponds with its position. When you set an instance at a particular position, the origin
of the sprite is placed there. Default it is the top left corner of the sprite but it is
sometimes more convenient to use the center or some other important point. You can
even choose an origin outside the sprite. You can aso set the origin by clicking in the
sprite image (when the origin is shown in the image).

58

Chapter 17 More about sounds and music

When you add sound resources to your game there are a number of other aspects that you
can indicate. These are only visible in advanced mode.

For al sounds you can indicate whether they should be loaded only on use. This is the
default for midi files but not for wave files. If you check this box, the sound is not loaded
into memory when the game starts. Only at the moment it is needed it is loaded. This
might give a dight hick-up. But is saves a lot of memory and it means that loading the
game is faster. Also, at the end of the room, the sound is discarded and the memory is
freed. Only if it is required again is it loaded again. Don't use this for short sound effects
but only for longer background music or fragments that are played only occasionaly.

For wave files you can indicate the number of buffers. This number indicated the number
of times the sound can play simultaneously. For example, when you have some exploding
sound and a number of explosions can happen at almost the same time, you might want to
increase this number such that al explosions can be heard smultaneously. Be careful
though. Multiple buffers cost (depending on the sound card) more memory.

Also you can indicate whether the sound should be prepared for sound effects. These
effects, like panning the sound and changing the volume, can only be used from code.
Sounds that alow for sound effects take up more resources.

Game Maker does not have a built-in sound editor. But in the preferences you can
indicate external editors that you want to use for editing sounds. If you filled these in you
can press the button labeled Edit Sound to edit the current sound. (The Game Maker
window will be hidden while you edit the sound and returns when you close the sound
editor.)

Besides wave files and midi files, there is actually athird kind of sound files: mp3 files.
These are compressed wave files. Although you don't see them when selecting a sound
file you can actualy use them in Game Maker. First select to show al files at the bottom
of the file open dialog, and you can load them. Be careful though. There are a number of
disadvantages. First of all, they need to be decompressed which takes processing time and
might dow down the game. The fact that the file size is smaller does not mean that they
use less memory. Secondly, not all machines support them. So your game might not run
on al machines. Preferably don't use them but convert your mp3 files into wave files. If
you still want to use them, only use them as background music.

59

Chapter 18 More about backgrounds

Besides loading them from files, you can aso create your own backgrounds. To this end,
press the button labeled Edit Background. A little built-in painting program opens in
which you can create or change your background. Please redlize that this is not a full-
blown program. For more advanced editing tools use some paint program. The built-in
paint program is described in Section 16.2. There is one option that is particularly useful.
In the Image menu you find a command Gradient Fill. This can be used to create some
nice gradient backgrounds.

In advanced mode, the background property from has a number of advanced options.

Normally backgrounds are stored in video memory. This is fine when they are small but
when you use large backgrounds you might want to use norma memory instead. This
will be slightly slower, but video memory is limited. To this end uncheck the box labeled
Use video memory.

Also, default backgrounds are loaded when they are needed and discarded again at the
end of the room. This saves a lot of memory but will make the starting of room dslightly
dower and can give a little hick-up when changing the background halfway a room. To
avoid this, uncheck the box labeled L oad only on use.

60

Chapter 19 More about objects

When you create an object in advanced mode, you can change some more advanced
settings.

19.1 Depth

First of all, you can set the Depth of the instances of the object. When the instances are
drawn on the screen they are drawn in order of depth. Instances with the largest depth are
drawn first. Instances with the smallest depth are drawn last. When instances have the
same depth, they are drawn in the order in which they were created. If you want to
guarantee that an object lies in front of the others give it a negative depth. If you want to
make sure it lies below other instances, give it a large positive depth. You can also
change the depth of an instance during the game using the variable called dept h.

19.2 Persistent objects

Secondly, you can make an object persistent. A persistent object will continue existing
when you move from one room to the next. It only disappears when you explicitly
destroy it. So you only need to put an instance of the object in the first room and then it
will remain available in al rooms. This is great when you have e.g. a main character that
moves from room to room. Using persistent objects is a powerful mechanism but also one
that easily leads to errors.

19.3 Parents

Every object can have a parent object. When an object has a parent, it inherits the
behavior of the parent. Stated differently, the object is sort of a specia case of the parent
object. For example, if you have 4 different balls, named ball1, ball2, ball3 and ball4, that
all behave the same but have a different sprite, you can make balll the parent of the other
three. Now you only need to specify events for ball1l. The others will inherit the events
and behave exactly the same way. Also, when you apply actions to instances of the parent
object they will aso be applied to the children. So, for example, if you destroy all balll
instances also the ball2, ball3, and ball4 instances will be destroyed. This saves a lot of
work.

Often, objects should behave amost completely the same but there will be some small
differences. For example, one monster might move up and down and the other left and
right. For the rest they have exactly the same behavior. In this case aimost all events
should have the same actions but one or two might be different. Again we can make one
object the parent of the other. But in this case we also define certain events for the child
object. These events "override" the parent events. So whenever an event for the child
object contains actions, these are executed instead of the event of the parent. If you also
want to execute the parent event you can call the so-called "inherited" event using the
appropriate action.

61

It is actually good practice in such cases to create one base object, for example a ballO
object. This base object contains all the default behavior but is never used in the game.
All actual objects have this base object as parent.

Parent objects can again have parents, and so on. (Obviously you are not allowed to
create cycles.) In this way you can create an object hierarchy. This is extremely useful to
keep you game structured and you are strongly advised to learn to use this mechanism.

There is also a second use of the parent object. It also inherits the collision behavior for
other objects. Let me explain this with an example. Assume you have four different floor
objects. When a ball hits the floor it must change direction. This has to be specified in the
collision event of the ball with the floor. Because there are four different floors we need
to put the code on four different collision events of the ball. But when you make one base
floor object and make this one the parent of the four actual floor objects, you only need to
specify the collision event with this base floor. The other collisions will perform the same
event. Again, this saves alot of copying.

As indicated, wherever you use an object, this also implies the descendants. This happens
when, in an action, you indicate that the action must be applied to instances of a certain
object. It also happens when you use the wi t h() statement in code (see below). And it
works when you call functions like i nst ance_posi ti on, i nst ance_nunber, €c.
Finaly, it works when you refer to variables in other objects. In the example above when
you set bal | 1. speed to 10 this also appliesto ball2, ball3 and ball4.

19.4 Masks

When two instances collide a collision event occurs. To decide whether two instances
intersect, the sprites are used. This is fine in most cases, but sometimes you want to base
collisions on a different shape. For example, if you make an isometric game, objects
typically have a height (to give them a 3D view). But for collisons you only want to use
the ground part of the sprite. This can be achieved by creating a separate sprite that is
used as collision mask for the object.

19.5 Information

The button Show Information gives an overview of al information for the object that
can aso be printed. This is in particular useful when you loose overview of al your
actions and events.

62

Chapter 20 More about rooms

Rooms in Game Maker have many options. In Chapter 13 we only treated the most
important ones. In this chapter we will discuss the other options.

20.1 Advanced settings

There where two aspects in the settings tab that we did not yet discuss. First of al, there
is a checkbox labeled Persistent. Normally, when you leave a room and return to the
same room later, the room is reset to its initial settings. This is fine if you have a number
of levelsin your game but it is normally not what you want in for example an RPG. Here
the room should be the way you left it the last time. Checking the box labeled Per sistent
will do exactly that. The room status will be remembered and when you return to it later,
it will be exactly the same as you left it. Only when you restart the game will the room be
reset. Actualy, there is one exception to this. If you marked certain objects & being
persistent (see Chapter 19), instances of this object will not stay in the room but move to
the next room.

Secondly, there is a button labeled Creation code. Here you can type in a piece of code
in GML (see later) that is executed when the room is created. This is useful to eg. fill in
certain variables for the room, create certain instances, etc. It is useful to understand what
exactly happens when you move to a particular room in the game.
- Firdt, in the current room (if any) all instances get a roomend event. Next the
non-persistent instances are removed (no destroy event is generated!).
Next, for the new room the persistent instances from the previous room are added.
All new instances are created and their creation events are executed (if the room is
not persistent or has not been visited before).
When this is the first room, for al instances the game-start event is generated.
Now the room creation code is executed.
Finally, al instances get aroom-start event.
So, for example, the room-start events can use variables set by the creation code for the
room and in the creation code you can refer to the instances (both new ones and persistent
ones) in the room.

There is one further option. If you set the correct preference, right clicking on an instance
in the room will show a pop-up menu. Here you can give the usual comments to delete it
or move it in the depth order, but you can aso indicate some creation code. This code is
executed when the room is started, just before the creation event of the instance is
executed. Thisisvery useful to e.g. set certain parameters that are specific to the instance.

20.2 Adding tiles

Y ou can also create so-called tiled background. The reason for thisis as follows: In many
games you like to have nice looking backgrounds. For example, in a maze game, the
walls of the maze should nicely match up, and in plaiform game you like to see
beautifully drawn platforms, trees, etc. Y ou can do this in Game Maker by defining many
different objects and composing your rooms from these objects. The problem though is

63

that this takes a lot of work, uses large amounts of resources, and makes the games run
dow because of the many different objects. For example, to create nice walls in maze
games you already need 15 differently shaped wall objects.

The standard way out, used in many games, is that the walls and other static objects are
actually drawn on the background. But, you might ask, how does the game know that an
object hits a wall if it is drawn on the background only? The trick is as follows. You
create just one wall object in your game. It must have the right size but it does not need to
look nice. When creating the room, place this object at all places where there is a wall.
And, here comes the trick, we make this object invisible. So when playing the game you
don’'t see the wall objects. You see the beautiful background instead. But the solid wall
objects are still there and the object in the game will react to them.

You can use this technique for any object that is not changing its shape or position. (You
can aso not use it when the object must be animated.) For platform games, you probably
need just one floor and one wall object, but you can make beautifully looking
backgrounds where it looks as if you walk on grass, on tree branches, etc.

To add tiles to your room you first need to add a background image to your game that
contains the tiles. A few of these are provided with Game Maker. If you want to have
your tiles partialy transparent, make sure you make the background image transparent.
Now, when defining your room, click on the tab tiles. The following form is shown
(actually, we aready added some tilesin this room).

B Room Properties

backgrounds]
objects] zettings i b

cnomememaneswdll

e—-t 1] 44 -
(.~
o

iy ~ 'Y

| Foreground tiles

{I:uau:kgmund[l =]
[v Delete underlving

width |16 height |16
Haep |1 Yaep |1

[Clear | = Shift |

«" Ok

At the left top there is the current set of tiles used. To select the set, click on the menu
button below it and select the appropriate background image. Below the tile set you can
change a number of settings. Y ou can set the width and height of an individual tile, and a
separation between the tiles (this is normally O or 1).

Now you can add tile by selecting the tile you want at the top left, and next clicking at the
appropriate place in the room at the right. This works in exactly the same way as for
adding instances. Underlying tiles are removed, unless you uncheck the box Delete
underlying. You can use the right button to delete tiles. There are also buttons to clear all
tiles and to shift all tiles.

Note that there is a box labeled Foreground tiles. If you check this, the tiles will be
drawn in front of the objects rather than behind them. This can be used in many ways.
Note that when you check the box aso only foreground tiles are removed.

Using tiles is a powerful feature that should be used as much as possible. It is much faster

than using objects and the tile images are stored only once. So you can use large tiles
rooms with very little memory consumption.

65

20.3 Views

Finaly, thereis atab labeled views. This gives a mechanism of drawing different parts of
your room at different places on the screen. There are many uses for views. First of all, in
anumber of games you want to show only part of the room at any time. For example, in
most platform games, the view follows the main character. In two-player games you often
want a split-screen mode in which in one part of the screen you see one player and in
another part you see the other player. A third use is in games in which part of the room
should scroll with e.g. the main character while another part is fixed (for example some
status panel). This can all be easily achieved in Game Maker .

When you click the tab labeled views the following information will show:

obiects | seftings | tles | At the top there is a box labeled Enable the use of Views.
backgrounds | wews | You much check this box to use views. Below this you see
the list of a most eight views you can define. Below the list

you can give information for the views. First of all you must

indicate whether the view should be visible when the room

i starts. Make sure at least one view is visible. Visible views
iew 3 are shown in bold. Next you indicate the area of the room
et 4 ¥ that should be shown in the view. You specify the left and
[e top position, and the width and the height of the view.

et o T Below that you indicate the position of the view on the

screen.
W 540 H: 1480
= o0 B As indicated above, you often want the view to follow a
%o w0 | certain object. This object you can indicate at the bottom. If
there are multiple instances of this object, only the first one
HBor [32 WBor [32 | jsfollowed by the view. (In code you can also indicate that a
_ _ paticular instance must be followed.) Normally the
Hse 11 ¥Se 1| aracter should be able to walk around a bit without the
b el view changing. Only when the character gets close to the
<no objects =l boundary of the view, should the view change. You can
specify the size of the border that must remain visible
around the object. Finally, you can restrict the speed with which the view changes. This
might mean that the character can walk of the screen, but it gives a much smoother game
play. Use—1 if you want the view to change instantaneously.

66

Chapter 21 Paths

In more advanced games you often want to let instances follow certain paths. Even
though you can indicate this by e.g. using timer events or code, thisis rather complicated.
Path resources are an easier mechanism for this. The idea is rather ssmple. You define a
path by drawing it. Next you can place an action in e.g. the creation event of the object to
tell the object to follow the particular path. This chapter will explain this in detail. The
current implementation is rather limited. Expect more possibilities in future versions
(compatible with the current version).

21.1 Defining paths

To add a path to your game, choose Add Path from the Add menu. The following form
will pop up (in the example we aready added a little path).

I path Properties

M ame; Ipathl:l
[-65,-200 rp: 100 e |.3|3
[21,-1001 sp: LoD = .
[108,-51) rp: 100 ¥ -4
[94,74) sp: 1o i
[1.&1) p: lod S ‘||:||:|
(10,2 sp: 100 *
Add *
Inzert W
Delete
connection kind Clear
" Straight lines - L -
* Smooth curve
action at the end
" Stopmoving © Bewverse
" Jurmp to start T Continue

* Move to start

+" OK

At the left top of the form you can set the name of the path, as usual. Below it youfind
the points that define the path. Each point has both a position and a speed (indicated with
sp). The position is not absolute. As is indicated below, the instance will always start at
the first position on the path and follow the path from there. The speed should be
interpreted as follows. A value of 100 means the original speed of the instance. A lower
value reduces the speed, a higher value increases it (so it indicates the percentage of the
actual speed). Speed will be interpolated between points, so the speed changes gradually.

67

To add a point press the button Add. Now you can indicate the actual position and speed.
Whenever you select a point in the list, you can also change its values. Press Insert to
insert a new point before the current one, and Delete to delete the current point. Finaly,
you can use Clear to completely clear the path.

At the right of the form you will see the actual path. You can also change the path using
the mouse. Click anywhere on the image to add a point. Click on an existing point and
drag it to change its position. When you hold <Shift> while clicking on a point, you insert
a point. Finally, you can use the right mouse button to remove points. (Note that you
cannot change the speed thisway.)

Y ou can influence the shepe of the path in two ways. Fist of all you can use the type of
connection. You can either choose straight line connections or a smooth path. Secondly,
you can indicate what should happen when the last point is reached. There are a number
of options. The most common is to keep on moving to the first point, closing the path.
Alternatively you can stop moving, jump to the first point, or traverse the same path
backwards. The final option restarts the path from its current position. In this way the
path will normally "walk away". Only the first five iterations are shown but the path will
continue after that.

21.2 Assigning paths to objects

To assign a path to an instance of an object, you can place the path action in some event,
for example in the creation event. In this action you must specify the path from the drop
down menu. There are two further values you can provide. First of al there is the speed
with which the path must be executed. (This is the same as the normal speed setting.)
Remember that when defining the path you specify the actual speed relative to this
indicated speed. Secondly you can indicate where the path should be started. A value of O
indicates the start (which is most common). A value of 1 indicates the end of the path,
that is, the moment the path is executed a second time. E.g. when the path is reversing, a
value of 0.5 isthe moment where it reverses.

When using scripts or pieces of code you have more control over the way the path is
executed. There are four variables that influence this. The variable path_index indicates
the index of the path. The variable path_position indicates the current position on the path
(between 0 and 1 as indicated above). It changes while the instance follows the path. The
speed is controlled by the standard speed variable. Note that the direction variable isin
each step automatically set to the correct direction along the path. So you can use this
variable to e.g. choose the correct subimage. A variable path_scale can be used to scale
the path. A value of 1 is the original size. A larger value indicates that the path is made
larger, a smaller value makes it smaller. The variable path_orientation indicates the
orientation in which the path is executed (in degrees counter-clockwise). This enables
you to execute the path in a different orientation (e.g. moving up and down rather than
left and right).

You might wonder what happens when the instance collides with another instance while
it follows a path. First of the collision event is executed. If the other instance is solid the

68

instance will stop, as it should (assuming there is a collison event defined). The
path_position variable will though continue to follow the path. So at some moment the
instance might start moving again in a different direction, if such a position is reached on
the path.

21.3 The path event

As described above, you can indicate what must happen when the instance reaches the
end of the path. At this moment also an End of Path event occurs. You can find it under
the Other events. Here you can place actions. For example, you might want to destroy
the instance, or let it start a new (different) path.

69

Chapter 22 Time Lines

In many games certain things must happen at certain moments in time. You can try to
achieve this by using alarm events but when things get too complicated this won’t work
any more. The time line resource is meant for this. In a time line you specify which
actions must happen at certain moments in time. You can use al the actions that are also
available for the different events. Once you created a time line you can assign it to an
instance of an object. This instance will then execute the actions at the indicated moments
of time. Let me explain this with an example. Assume you want to make a guard. This
guard should move 20 time steps to the left, then 10 upwards, 20 to the right, 10
downwards and then stop. To achieve this you make a time line where you start with
setting a motion to the left. At moment 20 you set a motion upward, at moment 30 a
motion to the right, at moment 50 a motion downwards and at moment 60 you stop the
motion. Now you can assign this time line to the guard and the guard will do exactly what
you planned. You can also use atime line to control your game more globally. Create an
invisible controller object, create atime line that at certain moments creates enemies, and
assign it to the controller object. If you start to work with it you will find out it is a very
powerful concept.

To create a time line, choose Add Time Line from the Add menu. The following form
will pop up.

B Time Line Properties

X

=
m

M ame: b oments: Actions: Objects g
]
Jtimeline[l EEED lg 7 Create instance of object plane 4 3 i
& |
3
Step 120 ‘el Play zound zound(_E"J i %.
Add Change ’ ?
i
Delete Sounds it
@’ |2
Shift Merge _D%
Clear E-
Roors £
[|
8
@
g
&

=
[y]
v OK

It looks a bit like the object properties form. At the left you can set the name and there are
buttons to add and modify moments in the time line. Next there is the list of moments.
This list specifies the moments in time steps at which assigned action(s) will happen
Then there is the familiar list of actions for the selected moment and finally there is the
total set of actions available.

70

To add a moment press the button Add. Indicate the moment of time (this is the number
of steps since the time line was started). Now you can drag actions to the list as for object
events. There are also buttons to delete the selected moment, to change the time for the
selected moment and to clear the time line.

Finally there are two special buttons. With the M erge button you can merge al moments
in a time interval into one. With the Shift button you can shift al moment in a time
interval forwards or backwards by a given amount of time. Make sure you do not create
negative time moments. They will never be executed.

There are two actions related to time lines.

28 Set atimeline

With this action you set the particular time line for an instance of an object. Y ou indicate
the time line and the starting position within the time line (O is the beginning). You can
also use this action to end a time line by choosing No Time Line as vaue.

5| Set thetime line position

With this action you can change the position in the current time line (either absolute or
relative). This can be used to skip certain parts of the time line or to repeat certain parts.
For example, if you want to make a looping time line, at the last moment, add this action
to set the position back to 0. You can also use it to wait for something to happen. Just add
the test action and, if not true, set the time line position relative to - 1.

71

Chapter 23 Scripts

Game Maker has a built-in programming language. Once you get more familiar with
Game Maker and want to use it to its fullest extend, it is advisable to start learning to use
this language. For a complete description see Chapter 28. There are two ways to use the
language. First of all you can create scripts. These are pieces of code that you give a
name. They are shown in the resource tree and can be saved to a file ard loaded from a
file. They can be used to form a library that extends the possibilities of Game Maker.
Alternatively, you can add a code action to some event and type a piece of code there.
Adding code actions works in exactly the same way as adding scripts except for two
differences. Code actions don't have a name and cannot use arguments. Also they have
the well-known field to indicate to what objects the action should apply. For the rest you
enter code in exactly the same way as in scripts. So we further concentrate on scripts in
this chapter.

As stated before, a script is a piece of code in the built-in programming language that
performs a particular task. A script can take a number of arguments. To execute a script
from within some event, you can use the script action. In this action you specify the script
you want to execute, together with the up to five arguments. (Y ou can also execute scripts
from within a piece of code in the same way you call afunction. In that case you can use
up to 16 arguments.) When the script returns a value, you can aso use it as a function
when providing values in other actions.

To add a script to your game, choose Add Script from the Add menu. The following
form will pop up (in the example we aready added a little script that computed the
product of the two arguments).

| Script Properties

W | i) G t 0| s =2 | &% | Mame|multiply

{

return alrgu.mentlj ¥ gargumentl:

}

23 11 IN3

(Actually, this is the built-in script editor. In the preferences you can aso indicate that
you want to use an external editor.) At the top right you can indicate the name of the

172

script. You have a little editor in which you can type the script. The editor has a number
of useful properties many available through buttons (press the right mouse button for
some additional commands):

Multiple undo and redo either per key press or in groups (can be changed in the
preferences)

Intelligent auto indent that aigns with the previous line (can be set in the
preferences)

Intelligent tabbing that tabs till the first non space in the previous lines (can be set
in the preferences)

Use <Ctrl>| to indent selected lines and <Shift><Ctrl>I to unindent selected lines
Cut and paste

Search and replace

Use <Ctrl> + up, down, page-up, or page-down to scroll without changing the
cursor position

Use F4 to open the script or resource whose name is at the cursor position (does
not work in the code action; only in scripts)

Saving and loading the script as atext file

Also there is a button with which you can test whether the script is correct. Not al
aspects can be tested at this stage but the syntax of your script will be tested, together
with the existence of functions used.

As you might have noticed, parts of the script text are colored. The editor knows about
existing objects, built-in variables and functions, etc. Color-coding helps alot in avoiding
mistakes. In particular, you see immediately if you misspelled some name or use a
keyword as a variable. Color-coding is though a bit dow. In the preferences in the file
menu you can switch color-coding on and off. Here you can a so change the color for the
different components of the programs. (If something goes wrong with color coding, press
F12 twice, to switch it off and back on.) Also you can change the font used in scripts and
code.

Scripts are extremely useful to extend the possibilities of Game Maker. This does though
require that you design your scripts careful. Scripts can be stored in libraries that can be
added to your game. To import a library, use the itemImport scripts from the file menu.
To save your scripts in the form of a library use Export scripts. Script libraries are
smple text files (although they have the extension .gml). Preferably don't edit them
directly because they have a special structure. Some libraries with useful scripts are
included. (To avoid unnecessary work when loading the game, after importing a library,
best delete those scripts that you don't use.)

When creating scripts you easily make mistakes. Always test the scripts by using the
appropriate button. When an error occurs during the execution of a script thisis reported,
with an indication of the type of error and the place. If you need to check things more
carefully, you can run the game in debug mode. Now a form appears in which you can
monitor lots of information in your game.

73

. Debug Information

Fun watch Tools

=20 +OXx [0

E wprezzion

40 fps 13 insk

malse id:

Under the Run menu you can pause the game, run it step by step and even restart it.
Under the Watch menu you can watch the value of certain expressions. Use Add to type
in some expression whose value is shown in each step of the game. In this way you can
see whether your game is doing things the right way. You can watch many expressions.
Y ou can save them for later use (e.g. after you made a correction to the game). Under the
Tools menu you find items to see even more information. You can see a list of al
instances in the game, you can watch al globa variables (well, the most important ones)
and the local variables of an instance (either use the object name or the id of the
instance). You can also view messages which you can send from your code using the
function show_debug_nessage(str). Finaly you can give the game commands and
change the speed of the game. If you make complicated games you should realy learn

how to use the debug options.

74

Chapter 24 Data files

In more advanced games you often need to use additional files, for example files that
describe certain properties, backgrounds and sprites that you want to load during the
game, movies, DLL files (see later) or your own fonts. Y ou can distribute these files with
your game but it is nicer to embed them in the game itself. For this you can use data file
resources. A data file resource simply stores the contents of a file. When the game starts
this file is written to the disk and can then be used in the game.

To add a data file choose Add Data File from the Add menu. The following form will
show:

B Data Prop... g|§|@

Hame: |datall

% Load Data File |

Size: 0 bytez

File Marne: |S|:|E|:ia|.fr‘|t

E sport
" Don't Export

(" To Temporany Faolder
™ Toworking Folder

v Free Data Memony
I Oxemwite the File

v Hemove at Game End

+" 0K

Y ou can give the resource a name as always. Press the button Load Data File to load the
file into the resource. You can choose the File Name that must be used for storing the
resource (no path is alowed in the filename). Next you can indicate what to do with the
data file when the game starts.
Don’t Export. Don't export it at al. (There isa GML function to export it later.)
To Temporary Folder. The file is written to the temporary folder for the game.
Thisisin particular useful for e.g. loading backgrounds, etc.
To Working Folder. The file is written to the folder in which the game is
running. Many routines search for files there but you must be careful asthe player
might run the game from a read-only device.
Install a Font. If your file is a font file you can choose this option. The file is
saved in the temporary folder and next installed as a font such that it can be used
in the game.

75

Finally there are a few options
- Free Data Memory. When checked the memory used for the data file is freed

after exporting. This saves memory but means that the resource can no longer be
used in functions.
Overwrite the File. When checked the file is overwritten if it already exists.
Remove at Game End. When check the file is removed again when the game
ends. (Note that files in the temporary folder are always removed when the game
ends.)

If an error occurs during exporting the game will still run. But the file or font might not

be available.

Data files can take alot of memory but loading and exporting them is fast.

76

Chapter 25 Game information

A good game provides the player with some information on how to play the game. This
information is displayed when the player presses the <F1> key during game play. To
create the game information, double click Game Information in the resource tree at the
left of the screen A little build-in editor is opened where you can edit the game
information. Y ou can use different fonts, different colors, and styles. Also you can set the
background color.

One interesting option in the Format menu is to Mimic Main Form. When you check
this option the help form is displayed exactly at the position and the size of the game
form. As aresult it looks like the text appears in the game window. Choosing the correct
background color now provides a nice visua effect. (You might want to indicate at the
bottom of the help file that the user must press Escape to continue playing.)

A good advice is to make the information short but precise. Of course you should add
your name because you created the game. All example games provided have an
information file about the game and how it was created.

If you want to make a bit more fancy help, use e.g. Word. Then select the part you want
and use copy and paste to move it from Word to the game information editor.

77

Chapter 26 Game options

There are a rumber of options you can change for your game. They can be found by
double clicking on Game Options in the resource tree at the left of the screen. They are
subdivided in a number of tabbed pages.

26.1 Graphics options

In this tab you can set a number of optiors that are related to the graphical appearance of
your game. It is normally useful to check out the effects of these options because they can
have a significant effect on the way the game looks. Remember though that different
users have different machines. So better make sure that the settings also work on other
peoples machines.

Start in fullscreen mode
When checked the game runs in the full screen; otherwise it runs in a window.

Scale per centage in windowed mode

Here you can indicate that the image in windowed mode should be scaled. 100 is no
scaling. You typically use when your sprites and rooms are very small. Scaling is slower
but most modern graphics cards can do this with little overhead. Better don't use values
below 100 because scaling down is normaly very slow.

Scale percentage in fullscreen mode

Here you can indicate that the image in fullscreen mode should be scaled. 100 is no
scaling. A value of 0 indicates maximal possible scaling. Scaling is slower but most
modern graphics cards can do this with little overhead. Better don't use values below 100
because scaling down is normally very slow.

Only scale when thereis hardwar e support

If you check this scaling is only done when there is hardware support for this.
Unfortunately though some graphics cards indicate that there is hardware support even if
there is not.

Don’t draw a border in windowed mode
When checked in windowed mode the game window will not have a border or a caption
bar.

Don’t show the buttonsin the window caption
When checked in windowed mode the window caption will not show the buttons to close
the window or to minimize it.

Wait for vertical blank before drawing

The screen of your computer is refreshed a number of times per second (normally
between 50 and 100). After refreshing the screen there is a so-called vertical blank in
which nothing happens on the screen. If you draw the screen continuoudly, part of one
image and part of the next might show on the screen, which can give a poor visual effect.

78

If you wait for the vertical blank before drawing the next frame, this problem disappears.
The disadvantage is that the program must wait for the vertical blank which will dow it
down dlightly.

Display the cur sor
Indicates whether you want the mouse pointer to be visible. Turning t off is normally
faster and nicer. (You can easily make you own cursor object in Game Maker.)

Display the caption in fullscreen mode

When checked, in fullscreen mode a little white box is drawn at the left top, displaying
the room caption, the score and the number of lives. You can switch this off here. It is
normally nicer if you draw these things yourself at an appropriate place in your rooms.

Freeze the game when the form looses focus
When checked, whenever the player brings some other form to the top (e.g. another
application) the game freezes until the game window again gets the focus.

26.2 Resolution
In this tab you can set the screen resolution in which your game must run.

Set the resolution of the screen

The screen has a particular resolution. Three apects play a role here: the number of
pixels (horizontal and vertical) on the screen, the number of bits used for representing the
colors, and the frequency with which the screen is refreshed. Normally Game Maker does
not change these settings, that is, it uses the settings for the machine on which the game is
running. This can lead to poor graphics. For example, if your rooms are small and a user
uses a large screen resolution, the game will play in a very small window. You can solve
this by using full screen mode and scaling the image, but that might slow down the game.
The best way to solve this is to tell Game Maker to change the screen resolution when
running the game. It will change it back afterwards. To do so, check this option. A
number of additioral options will occur. First of al you can indicate the color depth
setting (16 or 32 bits; normally 16 bits is best; on Windows 98 games will aways run in
16 bit color depth, even if you specify 32 bits). Secondly you can indicate the screen size
(320x240, 640x480, 800x600, 1024x768, 1280x1024, or 1600x1200). Some warnings are
in place here though. If you choose a small resolution (e.g. 320x240) Windows will resize
al your forms when you run the game. This might cause problems with other applications
you are running (and also in Game Maker itself). (Use exclusive mode to avoid this.)
When you use the largest two you should also be careful because not all computers
support it. You can also indicate not to change the screen size. Finally you can indicate
the frequency (60, 70, 85, 100; if the one you specify is too high, the default frequency is
used; you can also specify to use the default frequency). Also the following option
OCCUrS:

Use exclusive graphics mode

In exclusive mode, the game has the full cntrol over the screen. No other applications
can use it anymore. It makes the graphics often a bit faster and allows for some special

79

effects (like gamma settings). If you want to make sure the computer of the player is and
stays in the right screen resolution, you best use exclusive mode. A warning is in place
though. In exclusive mode no other windows can show. This e.g. means that you cannot
use actions that display a message, ask a question, show the highscore list, or show the
game information. Also no errors can be reported. In general, when something goes
wrong in exclusive mode the game ends, and sometimes this does not help and the player
has no other option than to restart the computer. So make sure your game works
absolutely correct. You cannot un your game in debug mode when using exclusive
mode.

26.3 Key options

L et <Esc> end the game

When checked, pressing the escape key will end the game. More advanced games
normally don't want this to happen because they might want to do some processing (like
saving) before ending the game. In this case, uncheck this box and provide your own
actions for the escape key. (Clicking on the cross of the window will also generate an
escape key event.)

L et <F1> show the gameinformation
When checked pressing the F1 key will display the game information (not in exclusive
mode).

Let <F4> switch between screen modes
When checked the F4 key will switch between fullscreen and windowed mode (not in
exclusive mode).

L et <F5> and <F6> load and save the game
When checked the player can use <F5> to store the current game situation and <F6> to
load the last saved game.

26.4 Loading options

Here you can indicate what should happen when loading a game. First of all you can
specify your own loading image. Secondly, you can indicate whether to display aloading
progress bar at the bottom of the image. Y ou have three options here. Either no loading
bar is displayed, or the default bar is displayed or you can specify two images: the
background of the loading bar and the foreground. They will be scaled to obtain the
correct size. (Note that both images must be specified in this case, not just one.)

Secondly, you can indicate here the icon that should be used for stand-alone games. You
can only use 32x32 icons. If you try to select another type of icon you will get awarning.

Finally you can change the unique game id. This id is used for storing the highscore list

and save game files. If you release a new version of your game and don't want to take
over the old highscore list, you should change this number.

80

26.5 Error options
Here you can set a number of options that relate to the way errors are reported.

Display error messages
When checked, error messages are shown to the player. (Except in exclusve mode.) In
the final version of the game you might want to uncheck this option.

Write error messagesto filegame _errors.log
When checked al error messages are written to a file called game_errors.log in the game
folder.

Abort on all error messages

Normally, certain errors are fatal while others can be ignored. When checking this option
al errors are considered fatal and lead to aborting the game. In the fina version of the
game you distribute you might want to check this option.

Treat uninitialized variablesas 0

One common error is to use a variable before a value is assigned to it. Sometimes this is
difficult to avoid. When checking this option such uninitialized variables no longer report
an error but are treated as value 0. Be careful though. It might mean that you don't spot
typing mistakes anymore.

26.6 Info options

Here you can indicate the author of the game, the version of the game, and some
information about the game. Also the last changed date is maintained. This is useful if
you are working with multiple people on a game or make new, updated version. The
information is not accessible when the game is running.

81

Chapter 27 Speed considerations

If you are making complicated games you probably want to make them run as fast as
possible. Even though Game Maker does its best to make games run fast, a lot depends
on how you design your game. Also, it is rather easy to make games that use large
amounts of memory. In this chapter |1 will give some hints on how to make your games
faster and smaller.

First of all, look carefully at the sprites and backgrounds you use. Animated sprites take a
lot of memory and drawing lots of sprites takes a lot of time. So make your sprites as
small as possible. Remove any invisible area around it (there is a command for thisin the
sprite editor). Carefully decide which sprites to store in video memory and which ones to
only load on use. The same applies to background images. In genera you want to load
them on use and, in particular when they are large, you don't want to store them in video
memory. If you have a covering background, nake sure you switch off the use of a
background color.

If you use full screen mode or exclusve mode, make sure the size of the room (or
window) is never larger than the screen size. Most graphics card can efficiently scale
images up but they are very dow in scaling images down! Also, preferably draw as few
other things than sprites. This is dow. If you do need them, preferably draw them
immediately after each other. Finally, whenever possible, switch off the cursor. It Slows
down the graphics.

Also be careful with the use of many views. For each view the room is redrawn.

Besides the graphics, there are also other aspects that influence the speed. Make sure you
have as few instances as possible. In particular, destroy instances once they are no longer
required (e.g. when they leave the room). Avoid lots of work in the step event or drawing
event of instances. Often things do not need to be checked in each step. Interpretation of
code is reasonably fast, but it is interpreted. Also, some functions and actions take a lot of
time; in particular those that have to check all instances (like for example the bounce
action).

Think about where to treat the collision events. You normally have two options. Objects
that have no collision events at all are treated nmuch faster, so preferably treat them in
those objects for which there are just a few instances.

Be careful with using large sound files. They take a lot of memory and aso compress
badly. You might want to check your sounds and see whether you can sample them
down.

Findly, if you want to make a game that many people can play, make sure you test it on
older machines.

82

Chapter 28 The Game Maker Language (GML)

As you have read before, Game Maker contains a built-in programming language. This
programming language gives you much more flexibility and control than the standard
actions. This language we will refer to as GML (the Game M aker Language). There are a
number of different places where you can type programs in this language. First of al,
when you define scripts. A script is a program in GML. Secondly, when you add a code
action to an event. In a code action you again have to provide a program in GML.
Thirdly, in the room creation code. And finaly, wherever you need to specify a value in
an action, you can also use an expression in GML. An expression, as we will see below is
not a complete program, but a piece resulting in a value.

In this chapter | will describe the basic structure of programsin GML. When you want to
use programs in GML, there are a couple of things you have to be careful about. First of
al, for al your resources (sprites, objects, sounds, etc.) you must use names that start
with a letter and only consist of letters, digits and the underscore * ' symbol. Otherwise
you cannot refer to them from within the program. Make sure all resources have different
names. Also be careful not to name resources self, other, global, or all because these have
gpecial meaning in the language. Also you should not use any of the keywords, indicated
below.

28.1 A program

A program consists of a set of instructions, called statements. A program must start with
the symbol ‘{" and end with the symbol ‘}’. Between these symbols there are the
statements Statements must be separated with a *;’ symbol. So the global structure of
every program is.

{

<st at enent >;
<st at enent >,

}

There are a number of different types of statements, which will be discussed below.

28.2 Variables

Like any programming language GML contains variables. Variables are memory
locations that store information. They have a name such that you can refer to them. A
variable in GML can store either a real number or a string. Variables do not need to be
declared like in many other languages. There are a large number of built-in variables.
Some are general, like nbuse_x and nouse_y that indicate the current mouse position,
while al others are local to the object instance for which we execute the program, like x
and y that indicate the current position of the instance. A variable has a name that must
start with a letter and can contain only letters, numbers, and the underscore symbol * .
(The maximal length is 64 symbols) When you use a new variable it is loca to the

83

current instance and is not known in programs for other instances (even of the same
object). You can though refer to variables in other instances; see below.

28.3 Assignments
An assignment stores a value in a variable. An assignment has the form:

<vari abl e> = <expressi on>;

An expression can be a smple value but can aso be more complicated. Rather than
assigning a value to a variable, one can also add the value to the current value of the
variable using +=. Similar, you can subtract it using - =, multiply it using * =, divide it
using/ = ,or use bitwise operators using |=, &\, or "=.

28.4 Expressions

Expressions can be real numbers (e.g. 3.4), strings between single or double quotes (e.g.
“hell o’ or “hel | 0”) or more complicated expressions. For expressions, the following
binary operators exist (in order of priority):

&& || ~":combine Boolean values (&& =and, | | = or, ™ = xor)

< <= == = > >=: comparisons, result in true (1) or false (0)

| & ~: bitwise operators (| = bitwise or, & = bitwise and, ~ = bitwise xor)
<< >>: bitwise operators (<< = shift left, >> = shift right)

+ - addition, subtraction

* [/ div nod: multiplication, division, integer division, and modulo

Also, the following unary operators exist:

I : not, turns true into false and false into true
- 1 negates the next value
~: hegates the next value bitwise

As values you can use numbers, variables, or functions that return a vaue. Sub-
expressions can be placed between brackets. All operators work for real values.
Comparisons also work for strings and + concatenates strings. (Please note that, contrary
to certain languages, both arguments to a Boolean operation are always computed, even
when the first argument already determines the outcome.)

Example
Here is an example with some useless assignments.

X = 23;
str = "hello world';
y +=5;
X *=y

X = 23*((2+4) | sin(y));

str = "hello" + " world";

b = (x <5) & ! (x==2 || x==4);
}

28.5 Extravariables

You create new variables by assigning a value to them (no need to declare them first). If
you simply use a variable name, the variable will be stored with the current object
instance only. So don’'t expect to find it when dealing with another object (or another
instance of the same object) later. You can also set and read variables in other objects by
putting the object name with a dot before the variable name.

To create global variables, that are visible to al object instances, precede them with the
word gl obal and adot. So for example you can write:

{
if (global.doit)

/1 do sonething
gl obal . doit = fal se

}
}

Sometimes you want variables only within the current piece of code or script. In this way
you avoid wasting memory and you are sure there is no naming conflict. It is also faster
than using globa variables. To achieve this you must declare the variables at the
beginning of the piece of code using the keyword var. This declaration looks as follows.

var <varnanel>, <var nane2>, <var name3>
For example, you can write:

{

var XX, VY;
XX = x+10;
yy = y+10;

i nstance_create(xx,yy,ball);

}

28.6 Addressing variables in other instances
As described above, you can set variables in the current instance using statements like

X = 3;

But in a number of cases you want to address variables in another instance. For example,
you might want to stop the motion of all balls, or you might want to move the main
character to a particular position or, in the case of a collision, you might want to set the
sprite for the other instance involved. This can be achieved by preceding the variable
name with the name of an object and a dot. So for example, you can write

85

bal | . speed = 0;

This will change the speed of all instances of object ball. There are a number of special
Obj ects’.
sel f : The current instance for which we are executing the action
ot her : The other instance involved in a collision event
al I : All instances
noone: No instance at al (sounds weird probably but it does come in handy as we
will see later on)
gl obal : Not an instance at all, but a container that stores global variables
o, for example, you can use the following kind of statements:

ot her.sprite_index = spriteb;
all.speed = 0;

gl obal . nessage = ' A good result';
gl obal . x = ball. x;

Now you might wonder what the last assignment does when there are multiple balls.
Weéll, the first one is taken and its x value is assigned to the global value.

But what if you want to set the speed of one particular ball, rather than al balls. Thisis
dightly more difficult. Each instance has a unique id. When you put instances in a room
in the designer, this instance id is shown when you rest the mouse on the instance. These
are numbers larger than or equal to 100000. Such a number you can aso use as the left-
hand side of the dot. But be careful. The dot will get interpreted as the decimal dot in the
number. To avoid this, put brackets around it. So for example, assuming the id of the ball
is 100032, you can write:

(100032) . speed = 0;

When you create an instance in the program, the call returns the id. So a valid piece of
program is

{

nnn = instance_create(100, 100, bal 1);
nnn. speed = 8;

}

This creates a ball and sets its speed. Note that we assigned the instance id to a variable
and used this variable as indication in front of the dot. This is completely valid. Let me
try to make this more precise. A dot is actualy an @erator. It takes a value as left
operand and a variable (address) as right operand, and returns the address of this
particular variable in the indicated object or instance. All the object names, and the
special objects indicated above simply represent values and these can be dealt with like
any value. For example, the following program is valid:

{

86

obj [0] bal |

obj [1] flag;
obj[0].alarn{4] = 12;
obj[1].id.x = 12;

}

The last statement should be read as follows. We take the id of the first flag. For the
instance with that id we set the x coordinate to 12.

Object names, the special objects, and the instance id's can also be used in a number of
functions. They are actually treated as constants in the programs.

28.7 Arrays

You can use 1- and 2-dimensiona arrays in GML. Simply put the index between square
brackets for a 1-dimensional array, and the two indices with a comma between them for
2-dimensional arrays. At the moment you use an index the array is generated. Each array
runs from index 0. S be careful with using large indices because memory for a large
array will be reserved. Never use negative indices. The system puts a limit of 32000 on
each index and 1000000 on the total size. So for example you can write the following:

{

a[0] = 1;

i =1

while (i < 10) {a[i] = 2*a[i-1]; i += 1;}
b[4,6] = 32;

28.8 If statement
An if statement has the form

i f (<expression>) <statenent>
or
i f (<expression>) <statenment> el se <statenent>

The statement can also be a block. The expression will be evaluated. If the (rounded)
vaue is <=0 (false) the statement after else is executed, otherwise (true) the other
statement is executed. It is a good habit to always put curly brackets around the
statements in the if statement. So best use

i f (<expression>)

{

<st at enent >

}

el se

{

<st at enent >

}

Example
The following program moves the object toward the middle of the screen.

87

{
if (x<200) {x += 4} else {x -= 4};
}

28.9 Repeat statement
A repeat statement has the form

repeat (<expression>) <statenment>

The statement is repeated the number of times indicated by the rounded value of the
expression.

Example
The following program creates five bals at random positions.

{
repeat (5) instance_create(random(400), random(400), ball);

}

28.10 While statement
A while statement has the form

whi | e (<expression>) <statenent>

As long as the expression is true, the statement (which can also be a block) is executed.
Be careful with your while loops. You can easily make them loop forever, in which case
your game will hang and not react to any user input anymore.

Example
The following program tries to place the current object at a free position (thisis about the
same as the action to move an object to arandom position).

{
while (!place_free(x,y))

{
X
y
}
}

random(room wi dt h) ;
random(room hei ght);

28.11 Do statement
A do statement has the form

do <statenment> until (<expression>)

The statement (which can also be a block) is executed until the expression is true. The
statement is executed at least once. Be careful with your do loops. You can easily make

88

them loop forever, in which case your game will hang and not react to any user input
anymore.

Example
The following program tries to place the current object at a free position (this is about the
same as the action to move an object to a random position).

do
{

X
y

random(room wi dt h) ;
random(room hei ght);

until (place_free(x,y))

}

28.12 For statement
A for statement has the form

for (<statementl1> ; <expression> ; <statenent2>) <statenment3>

This works as follows. First statementl is executed. Then the expression is evaluated. If it
is true, statement 3 is executed; then statement 2 and then the expression is evaluated
again. This continues until the expression is false.

This may sound complicated. You should interpret this as follows. The first statement
initilizes the for-loop. The expression tests whether the loop should be ended.
Statement2 is the step statement that goes to the next loop evaluation.

The most common use is to have a counter run through some range.

Example
The following program initializes an array of length 10 with the values 1-10.

{
for (i=0; i<9; i+=1) list[i] = i+1;
}

28.13 Switch statement

In a number of situations you want to let your action depend on a particular value. You
can do this using a number of if statements but it is easier to use the switch statement. A
switch statement has the following form:

switch (<expression>)

{

case <expressionl>: <statenentl>; ...; break;
case <expression2>: <statenent2>; ...; break;

defaul t: <statenent>;

89

}

This works as follows. First the expression is executed. Next it is compared with the
results of the different expressions after the case statements. The execution continues
after the first case statement with the correct value, until a break statement is
encountered. If no case statement has the right value, execution is continued after the
default statement. (No default statement is required. Note that multiple case statements
can be placed for the same statement. Also, the break is not required. If there is no break
statement the execution simply continues with the code for the next case statement.

Example
The following program takes action based on a key that is pressed.

switch (keyboard_key)
{

case vk_left:
case vk_nunpad4:
X -= 4; break;
case vk_right:
case vk_nunpad6
X += 4; break;
}

28.14 Break statement
The break statement has the form

br eak

If used within a for-loop, a while-loop, a repeat-1oop, a switch statement, or a with
statement, it end this loop or statement. If used outside such a statement it ends the
program (not the game).

28.15 Continue statement
The continue statement has the form

conti nue

If used within a for-loop, a while-loop, a repeat-loop, or a with statement, it continues
with the next value for the loop or with statement.

28.16 Exit statement
The exit statement has the form

exit

It simply ends the execution of this script or piece of code. (It does not end the execution
of the game! For this you need the function gane_end() ; see below.)

90

28.17 Functions

A function has the form of a function name, followed by zero or more arguments between
brackets, separated by commas.

<function>(<argl>, <arg2>,.)

There are two types of functions. First of al, there is a huge collection of built-in
functions, to control al aspects of your game. Secondly, any script you define in your
game can be used as a function.

Note that for a function without arguments you still need to use the brackets. Some
functions return values and can be used in expressions. Others ssmply execute commands.
Note that it is impossible to use a function as the lefthand side of an assignment. For
example, you cannot write i nst ance_near est (X, y, obj). speed = 0. Instead you
must write (i nst ance_near est (x,y, obj)). speed = 0.

28.18 Scripts

When you create a script, you want to access the arguments passed to it (either when
using the script action, or when calling the script as a function from a program (or from
another, or even the same script). These arguments are stored in the variables
argunent 0, argunent 1, ..., ar gunent 15. So there can be at most 16 arguments.
(Note that when calling the script from an action, only the first 5 arguments can be
specified.) You can also usear gunent [0] etc.

Scripts can also return a value, such that they can be used in expressions. For this end you
use the return statement:

return <expression>
Execution of the script ends at the return statement!

Example
Here is the definition for alittle script that computes the square of the argument:

{
}

return (argunent O*ar gunment Q) ;

To call a script from within a piece of code, just act the same way as when calling
functions. That is, write the script name with the argument values in parentheses.

28.19 With constructions

As indicated before, it is possible to read and change the value of variables in other
instances. But in a number of cases you want to do a lot more with other instances. For
example, imagine that you want to move all balls 8 pixels down. You might think that
thisis achieved by the following piece of code

91

ball.y = ball.y + 8;

But thisis not correct. The right side of the assignment gets the value of the y-coordinate
of the first ball and adds 8 to it. Next this new value is set as y-coordinate of all balls. So
the result isthat all balls get the same y-coordinate. The statement

ball.y += 8;

will have exactly the same effect because it is ssmply an abbreviation of the first
statement. So how do we achieve this? For this purpose there is the with statement. Its
global formis

wi th (<expression>) <statenent>

<expression> indicates one or more instances. For this you can use an instance id, the
name of an object (to indicate all instances of this object) or one of the specia objects
(al, sdf, other, noone). <statement> is now executed for each of the indicated instances,
as if that instance is the current (self) instance. So, to move all balls 8 pixels down, you
can type.

with (ball) y += 8;

If you want to execute multiple statements, put curly brackets around them. So for
example, to move al balls to a random position, you can use

with (ball)
{

X
y

random(room wi dt h);
random(room hei ght) ;

}

Note that, within the statement(s), the indicated instance has become the self instance.
Within the statements the original self instance has become the other instance. So for
example, to move al balls to the position of the current instance, you can type

with (ball)

{

ot her. x;
ot her.y;

X
y

}

Use of the with statement is extremely powerful. Let me give a few more examples. To
destroy al balls you type

with (ball) instance_destroy();

If a bomb explodes and you want to destroy all instances close by you can use

92

with (all)

if (distance_to_object(other) < 50) instance_destroy();

}

28.20 Comment

Y ou can add comment to your programs. Everything on aline after // is not read. Y ou can
also make a multi-line comment by placing the text between /* and */. (Colorcoding
might not work correctly here! Press F12 to re-colorcode the text if an error occurs.)

28.21 Functions and variables in GML

GML contains a large number of built-in functions and variables. With these you can
control any part of the game. For all actions there are corresponding functions so you
actually don’t need to use any actions if you prefer using code. But there are many more
functions and variables that control aspects of the game that cannot be used with actions
only. So if you want to make advanced games you are strongly advised to read through
the following chapters to get an overview of al that is possible. Please note that these
variables and functions can also be used when providing vaues for actions. So even if
you don’'t plan on using code or writing scripts, you will till benefit from this
information.

The following convention is used below. Variable names marked with a* are read-only,

that is, their value cannot be changed. Variable names with [0..n] after them are arrays.
Therange of possible indicesis given.

93

Chapter 29 Computing things

Game Maker contains a large number of functions to compute certain things. Here is a
complete list.

29.1 Constants
The following constants exist:

t rue Equa to 1.
fal se Equal toO.
pi Equal to 3.1415...

29.2 Real-values functions
The following functions exist that deal with real numbers.

randon(x) Returns a random rea number between O and x. The number is
always smaler than x.

abs(x) Returns the absolute value of x.

si gn(x) Returnsthesignof x (-1 or 1).

round(x) Returns x rounded to the nearest integer.

f1 oor (x) Returnsthe floor of x, that is, x rounded down to an integer.

cei | (x) Returnsthe ceiling of x, that is, x rounded up to an integer.

f rac(x) Returnsthe fractional part of x, that is, the part behind the decimal dot.
sqgrt (x) Returns the square root of x. x must be non-negative.

sqr (x) Returns x*x.

power (X, n) Returnsx to the power n.

exp(x) Returns e to the power Xx.

I n(x) Returns the natura logarithm of x.

| 0g2(x) Returnsthe log base 2 of x.

| 0g10(x) Returns the log base 10 of x.

I ogn(n, x) Returnsthe log base n of x.

si n(x) Returnsthe sine of x (x in radians).

cos(x) Returnsthe cosine of x (x in radians).

t an(x) Returnsthe tangent of x (x in radians).

ar csi n(x) Returnstheinverse sine of x.

ar ccos(x) Returns the inverse cosine of x.

ar ct an(x) Returnsthe inverse tangent of x.

arctan2(y, x) Caculates arctan(Y/X), and returns an angle in the correct
quadrant.

degt or ad(x) Converts degrees to radians.

r adt odeg(x) Converts radians to degrees.

m n(x, y) Returnsthe minimum of x andy.

max(x, y) Returnsthe maximum of x andy.

m n3(x, Y, z) Returns the mnimum of x, y and z.

94

max3(X, Yy, z) Returns the maximum of X, y and z.

mean(x, y) Returnsthe average of x andy.

poi nt _di st ance(x1, y1, x2, y2) Returns the distance between point (x1,y1)
and point (x2,y2).

poi nt _di rection(x1,yl, x2,y2) Returns the direction from point (x1,y1)
toward point (X2,y2) in degrees.

i s_real (x) Returnswhether x isarea value (as opposed to a string).

i s_string(x) Returnswhether x isastring (as opposed to areal value).

29.3 String handling functions
The following functions deal with characters and string.

chr (val) Returns a string containing the character with asci code val.

ord(str) Returnsthe asci code of the first character in str.

real (str) Turnsdtr into areal number. str can contain a minus sign, a decimal
dot and even an exponertial part.

string(val) Turns the rea value into a string using a standard format (no
decimal places when it is an integer, and two decimal places otherwise).
string format(val,tot,dec) Turns va into a string using your own
format: tot indicates the total number of places and dec indicated the number of
decimal places.

string_l engt h(str) Returnsthe number of charactersin the string.
string_pos(substr,str) Returns the position of substr in str (0=no
occurrence).

string_copy(str,index, count) Returns a substring of str, starting at
position index, and of length count.

string_char_at(str,index) Returnsthe character in str at position index.
string_del ete(str,index, count) Returns a copy of str with the part
removed that starts at position index and has length count.
string_insert(substr, str,index) Returnsacopy of str with substr added
at position index.

string_replace(str, substr, newstr) Returns a copy of str with the first
occurrence of substr replaced by newstr.

string_replace_all(str,substr, newstr) Returns a copy of str with all
occurrences of substr replaced by newstr.

string_count (substr, str) Returns the number of occurrences of substr in
gir.

string_|l ower (str) Returnsalowercase copy of str.

string_upper (str) Returnsan uppercase copy of str.

string_repeat(str, count) Returnsastring consisting of count copies of str.
string_letters(str) Returnsastring that only contains the lettersin str.
string_digits(str) Returnsastring that only contains the digitsin str.
string lettersdigits(str) Returns a string that contains the letters and
digitsin str.

95

The following functions deal with the clipboard for storing text.
cli pboard_has_t ext () Returnswhether thereis any text on the clipboard.

cl i pboard_get _text () Returnsthe current text on the clipboard.
cl i pboard_set _text(str) Setsthe string str on the clipboard.

96

Chapter 30 GML: Game play

There are a large number of variables and functions that you can use to define the game
play. These in particular influence the movement and creation of instances, the timing,
and the handling of events.

30.1 Moving around

Obvioudly, an important aspect of games is the moving around of object instances. Each
instance has two built-in variables x and y that indicate the position of the instance. (To
be precise, they indicate the place where the origin of the sprite is placed. Position (0,0) is
the top-left corner of the room. You can change the position of the instance by changing
its x and y variables. If you want the object to make complicated motions this is the way
to go. You typicaly put this code in the step event for the object.

If the object moves with constant speed and direction, there is an easier way to do this.
Each object instance has a horizontal speed (hspeed) and a vertical speed (speed).
Both are indicated in pixels per step. A positive horizontal speed means a motion to the
right, a negative horizontal speed mean a motion to the left. Positive vertical speed is
downwards and negative vertical speed is upwards. So you have to set these variables
only once (for example n the creating event) to give the object instance a constant
motion.

There is quit a different way for specifying motion, using a direction (in degrees 0-359),
and a speed (should be non-negative). You can set and read these variables to specify an
arbitrary motion. (Internally this is changed into values for hspeed and vspeed.) Also
there is the friction and the gravity and gravity direction. Finally, there is the function
not i on_add(dir, speed) to add amotion to the current one.

To be complete, each instance has the following variables and functions dealing with its
position and motion:

x Its x-position.

y Its y-position.

Xpr evi ous Its previous x-position.

ypr evi ous Its previous y-position.

xst art Itsstarting x-position in the room.

ystart Itsstarting y-position in the room.

hspeed Horizontal component of the speed.

vspeed Vertica component of the speed.

di recti on Itscurrent direction (0-360, counter-clockwise, O = to the right).
speed Itscurrent speed (pixels per step).

friction Current friction (pixels per step).

gravi ty Current amount of gravity (pixels per step).

gravi ty_direction Direction of gravity (270 is downwards).

nmot i on_set (di r, speed) Setsthe motion with the given speed in direction dir.

97

not i on_add(di r, speed) Adds the motion to the curent motion (as a vector
addition).

pat h_i ndex Index of the current path the instance follows. Set to —1 to have no
path.

pat h_posi ti on Position in the current path. O is the beginning of the path. 1 is
the end of the path.

pat h_orientation Orientation (counter-clockwise) into which the path is
performed. O is the normal orientation of the path.

pat h_scal e Scale of the path. Increase to make the path larger. 1 is the default
value.

There are alarge number of functions available that help you in defining your motions:

pl ace_free(x,y) Returns whether the instance placed at position(x,y) is
collision-free. Thisistypically used as a check before actually moving to the new
position.

pl ace_enmpt y(x, y) Returns whether the instance placed at position (X,y) meets
nobody. So this function takes also non-solid instances into account.

pl ace_neeti ng(x,y, obj) Returns whether the instance placed at position
(X,y) meets obj. obj can be an object in which case the function returns true is
some instance of that object is met. It can also be an instance id, the specia word
al | meaning an instance of any object, or the special word ot her .

pl ace_snapped(hsnap, vsnap) Returns whether the instance is aligned with
the snapping values.

nmove_r andon(hsnap, vsnap) Move the instance to a free random, snapped
position, like the corresponding action.

nmove_snap(hsnap, vsnap) Snap the instance, like the corresponding action.
nmove_t owar ds_poi nt (x, y, sp) Moves the instances with speed sp toward
position (X,y).

nmove_bounce_solid(adv) Bounce aginst solid instances, like the
corresponding action. adv indicates whether to use advance bounce, that also
takes dlanted walls into account.

nmove_bounce_al | (adv) Bounce against all instances, instead of just the solid
ones.

nove_cont act _sol i d(dir, maxdi st) Move the instance in the direction until
a contact position with a solid object is reached. If there is no collision at the
current position, the instance is placed just before a collision occurs. If there
already is a collision the instance is not moved. You can specify the maximal
distance to move (use a negative number for an arbitrary distance).
nmove_contact _al | (dir, maxdi st) Same as the previous function but this
time you stop at a contact with any object, not just solid objects.

nove_out si de_sol i d(dir, naxdi st) Move the instance in the direction until
it no longer lies within a solid object. If there is no collision at the current position
the instance is not moved. You can specify the maximal distance to move (use a
negative number for an arbitrary distance).

98

nmove_out side_al | (dir, maxdi st) Same as the previous function but this
time you move until outside any object, not just solid objects.

di stance_to_point (x,y) Returns the distance of the bounding box of the
current instance to (x,y).

di stance_t o_obj ect (obj) Returns the distance of the instance to the nearest
instance of object obj.

posi tion_enpty(x,y) Returnswhether thereis nothing at position (x,y).

posi ti on_neeti ng(x,y, obj) Returns whether at position (x,y) there is an
instance obj. obj can be an object, an instance id, or the keywords sel f, ot her,
orall.

30.2 Instances

In the game, the basic units are the instances of the different objects. During game play
you can change a number of aspects of these instances. Also you can create new instances
and destroy instances. Besides the movement related variables discussed above and the
drawing related variables discussed below, each instance has the following variables:

obj ect _i ndex* Index of the object this is an instance of. This variable cannot
be changed.

i d* The unique identifier for the instance (>= 100000). (Note that when defining
rooms the id of the instance under the mouse is aways indicated.)

mask_i ndex Index of the sprite used as mask for collisions. Give this a value of
-1 to make it the same as the sprite_index.

sol i d Whether the instance is solid. This can be changed during the game.

per si st ent Whether the instance is persistent and will reappear when moving
to another room. You often want to switch persistence off at certain moments.
(For example if you go back to the first room.)

There is one problem when dealing with instances. It is not so easy to identify individual
instances. They don't have a name. When there is only one instance of a particular object
you can use the object name but otherwise you need to get the id of the instance. Thisisa
unique identifier for the instance. you can use it in with statements and as object
identifier (using the dot construction described in section 28.6). Fortunately there are a
number of variables and routines that help you locate instance id's.

i nst ance_count * Number of instances that currently exist in the room.
i nstance_i d[0. .n-1]* Theid of the particular instance. Here n is the number
of instance.

Let me give an example. Assume each unit in your game has a particular power and you
want to locate the strongest one, you could use the following code:

{

maxid = -1;

99

maxpower = O;
for (i=0; i<instance_count; i+=1)
{
iii = instance_id[i];
if (iii.object_index == unit)
{
if (iii.power > maxpower)
{maxid = iii; maxpower = iii.power;}
}

}
}

After the loop maxid will contain the id of the unit with largest power. (Don't destroy
instances during such a loop because they will automatically be removed from the array
and as aresult you will start skipping instances.)

i nstance_find(obj, n) Returnstheid of the (n+1)'th instance of type obj. obj
can be an object or the keyword al. If it does not exist, the specia object noone
IS returned.

i nst ance_exi st s(obj) Returns whether an instance of type obj exists. obj
can be an object, an instance id, or the keyword all.

i nst ance_nunber (obj) Returns the number of instances of type obj. obj can
be an object or the keyword all.

i nstance_position(x,y,obj) Returnstheid of the instance of type obj at
position (x,y). When multiple instances are at that position the first is returned.
obj can be an object or the keyword all. If it does not exist, the specia object
noone isreturned.

i nst ance_nearest (x, y, obj) Returns the id of the instance of type obj
nearest to (x,y). obj can be an object or the keyword all.

i nstance_furthest(x,y, obj) Returns the id of the instance of type obj
furthest away from (x,y). obj can be an object or the keyword all.

i nst ance_pl ace(x, y, obj) Returns the id of the instance of type obj met
when the current instance is placed at position (x,y). obj can be an object or the
keyword all. If it does not exist, the special object noone is returned.

The following functions can be used for creating and destroying instances.

i nstance_creat e(x, y, obj) Creates an instance of obj at position (x,y). The
function returns the id of the new instance.

i nst ance_copy(per f or mevent) Creates a copy of the current instance. The
argument indicates whether the creation event must be executed for the copy. The
function returns the id of the new copy.

i nst ance_dest roy() Destroys the current instance.

i nst ance_change(obj , perf) Changes the instance into obj. perf indicates
whether to perform the destroy and creation events.

posi tion_destroy(x,y) Destroy al instances whose sprite contains position
(x.y).

100

posi tion_change(x,y, obj, perf) Change all instances at (x,y) into obj. perf
indicates whether to perform the destroy and creation events.

30.3 Timing

Good games required careful timing of things happening. Fortunately Game Maker does
most of the timing for you. It makes sure things happen at a constant rate. This rate is
defined when defining the rooms. But you can change it using the global variable
room speed. So for example, you can dowly increase the speed of the game, making it
more difficult, by adding a very small amount (like 0.001) tor oom speed in every step.
If your machine is ow the game speed might not be achieved. This can be checked using
the variable f ps that constantly monitors the actual number of frames per second.
Finally, for some advance timing you can use the variable cur r ent _t i me that gives the
number of milliseconds since the computer was started. Here is the total collection of
variables available (only the first one can be changed):

room speed Speed of the game in the current room (in steps per second).

f ps* Number of frames that are actually drawn per second.

current _ti me* Number of milliseconds that have passed since the system was
started.

current _year* The current year.

current _nont h* The current month.

current _day* The current day.

current _weekday* The current day of the week (1=sunday, ..., 7=saturday).
current _hour* The current hour.

current _m nut e* The current minute.

current _second* The current second.

Sometimes you might want to stop the game for a short while. For this, use the sleep
function.

sl eep(nunb) Sleeps numb milliseconds.

As you should know, every instance has 8 different alarm clocks that you can set. To
change the values (or get the values) of the different aarm clocks use the following
variable:

alarnf 0..7] Vaue of the indicated alarm clock. (Note that alarm clocks only
get updated when the alarm event for the object contains actions!)

We have seen that for complex timing issues you can use the time line resource. Each

instance can have a time line resource associated with it. The following variables deal
with this:

101

timeline_index Index of the time line associated with the instance. Y ou can
set this to a particular time line to use that one. Set it to -1 to stop using atime line
for the instance.

timeline_position Current position within the time line. You can change
this to skip certain parts or to repeat parts.

timeline_speed Normaly, in each step the position in the time line is
increased with 1. You can change this amount by setting this variable to a
different value. You can use redls, e.g. 0.5. If the value is larger than one, several
moments can happen within the same time step. They will all be performed in the
correct order, so no actions will be skipped.

30.4 Rooms and score

Games work in rooms. Each room has an index that is indicated by the name of the room.
The current room is stored in variable room You cannot assume that rooms are
numbered in a consecutive order. So never add or subtract a number from the room
variable. Instead use the functions and variables indicated below. So a typical piece of
code you will useis:

{

if (room!= room.|ast)

{

room got o_next ();

}

el se

game_end();
}
}

The following variables and functions exist that deal with rooms.

r oomlndex of the current room; can be changed to go to a different room, but you
better use the routines below.

room first* Index of the first room in the game.

room | ast* Index of the last room in the game.

room got o(nunb) Goto the room with index numb.

room got o_pr evi ous() Go to the previous room.

room got o_next () Go to the next room.

room restart () Restart the current room.

room pr evi ous(nunb) Return the index of the room before numb (-1 = none)
but don't go there.

room next (nunb) Return the index of the room after numb (-1 = none).
gane_end() End the game.

gane_restart () Restart the game.

Rooms have a number of additional properties:

102

room wi dt h* Width of the room inpixels.

room hei ght * Height of the room in pixels.

room capt i on Caption string for the room that is displayed in the caption of the
window.

room per si st ent Whether the current room is persistent.

Many games offer the player the possibility to save the game and load a saved game. In
Game Maker this happens automatically when the player press <F5> for saving and <F6>
for loading. You can also save and load games from within a piece of code (note that
loading only takes place at the end of the current step).

gane_save(string) Savethe game to the file with name string.
ganme_|l oad(string) Load the game from the file with name string.

Another important aspect of many games is the score, the health, and the number of lives.
Game Maker keeps track of the score in a global variable scor e and the number of lives
in a globa variable | i ves. You can change the score by simply changing the value of
this variable. The same applies to health and lives. If livesis larger than O and becomes
smaller than or equal to O the no-more-lives event is performed for all instances. If you
don’t want to show the score and lives in the caption, set the variable show _scor e, €tc,,
to false. Also you can change the caption. For more complicated games you better display
the score yoursalf.

scor e The current score.

l'i ves Number of lives.

heal t h The current health (0-100).

show_scor e Whether to show the score in the window caption.

show | i ves Whether to show the number of lives in the window caption.
show_heal t h Whether to show the health in the window caption.

capti on_scor e The caption used for the score.

caption_lives The caption used for the number of lives.

capti on_heal t h The caption used for the health.

There is aso a built-in mechanism to keep track of a highscore list. It can cortain up to
ten names. For more information, see Chapter 34.

30.5 Generating events

Asyou know, Game Maker is completely event driven. All actions happen as the result of
events. There are a number of different events. Creation and destroy events happen when
an instance is created or destroyed. In each step, the system first handles the alarm events.
Next it handles keyboard and mouse events and next the step event. After this the
instances are set to their new positions after which the collision event is handled. Finaly
the draw event is used to draw the instances (note that when there are multiple views the

103

draw event is called multiple times in each step). You can also apply an event to the
current instance from within a piece of code. The following functions exist:

event _per for n{t ype, nunb) Performs event numb of the indicated type to the
current instance. The following event types can be indicated:

ev_create

ev_destroy

ev_step

ev_al arm

ev_keyboar d

ev_nouse

ev_col lision

ev_ot her

ev_draw

ev_keypress

ev_keyrel ease
When there are multiple events of the given type, numb can be used to specify the
precise event. For the alarm event numb can range from 0 to 7. For the keyboard
event you have to use the keycode for the key. For mouse events you can use the
following constants:

ev_left_button

ev_right _button

ev_m ddl e_button

ev_no_button

ev_|left _press

ev_right _press

ev_m ddl e_press

ev_|left _rel ease

ev_right rel ease

ev_ni ddl e_rel ease

ev_nouse_enter

ev_nouse_| eave

ev_joystickl |eft

ev_joystickl_right

ev_joystickl up

ev_joystickl down

ev_joystickl buttonl

ev_joystickl button2

ev_joystickl button3

ev_joystickl button4d

ev_joystickl button5

ev_joystickl button6

ev_j oystickl _button7

ev_joystickl _button8

ev_joystick2 | eft

ev_j oystick2_right

ev_joystick2_up

ev_j oystick2_down

ev_joystick2 buttonl

ev_j oystick2 button2

104

ev_j oystick2_button3
ev_joystick2 button4d
ev_joystick2 button5
ev_j oystick2 button6
ev_j oystick2 button7
ev_j oystick2_button8

For the collision event you give the index of the other object. Finally, for the other
event you can use the following constants:

ev_out si de

ev_boundary

ev_gane_start

ev_gane_end

ev_roomstart

ev_room end

ev_no_nore |ives

ev_no_nore_health

ev_ani mati on_end

ev_end_of _path

ev_user0

ev_userl

ev_user?2

ev_user3

ev_user4

ev_user5

ev_user6

ev_user?
For the step event you give the index can use the following constants:

ev_st ep_nor nal

ev_step_begin

ev_step_end
event _perform object (obj,type, nunb) This functions works the same as
the function above except that this time you can specify events in another object.
Note that the actions in these events are applied to the current instance, not b
instances of the given object.
event _user (nunb) In the other events you can also define 8 user events. These
areonly performed if you call this function numb must liein therange O to 7.
event _i nherited() Peforms the inherited event. This only works if the
instance has a parent object.

Y ou can get information about the current event being executed using the following read-
only variables:
event _t ype* Type of the current event begin executed.
event _nunber * Number of the current event begin executed.
event _obj ect * The object index for which the current event is being executed.
event _acti on* The index of the action that is currently being executed (O is the
first in the event, etc.).

105

30.6 Miscellaneous variables and functions

Here are some variables and functions that deal with errors.
error_occurred Indicates whether an error has occurred

error_l ast String indicating the last error message
show debug_nessage(str) Shows the string in debug mode

106

Chapter 31 GML: User interaction

There is no game without interaction with the user. The standard way of doing this in
Game Maker is to put actions in mouse or keyboard events. But sometimes you need
more control. From within a piece of code you can check whether certain keys on the
keyboard are pressed and you can check for the position of the mouse and whether its
buttons are pressed. Normally you check these aspects in the step event of some
controller object and take action accordingly. The following variables and functions exist:

mouse_x* X-coordinate of the mouse. Cannot be changed.

nmouse_y* Y-coordinate of the mouse. Cannot be changed.

mouse_button Currently pressed mouse button. As value use mb_nore,
mb_any, mb_left, mb_middle, or mb_right.

keyboard_| ast key Keycode of last key pressed. See below for keycode
constants. You can change it, e.g. set it to O if you handled it.

keyboar d_key Keycode of current key pressed (see below; O if none).

keyboar d_| ast char Last character pressed (as string).

keyboar d_st ri ng String containing the last at most 80 characters typed. This
string will only contain the printable characters typed. It aso correctly responds to
pressing the backspace key by erasing the last character.

Sometime it is useful to map one key to another. For example you might want to allow
the player to use both the arrow keys and the numpad keys. Rather than duplicating the
actions you can map the numpad keys to the arrow keys. Also you might want to
implement a mechanism in which the player can set the keys to use. For this the
following functions are available

keyboard_set map(keyl, key2) Mapsthe key with keycode key1 to key?2.
keyboar d_get _map(key) Returns the current mapping for key.
keyboard_unset _nap() Resetsall keysto map to themselves.

To check whether a particular key or mouse button is pressed you can use the following
functions. Thisisin particular useful when multiple keys are pressed simultaneously.

keyboar d_check(key) Returns whether the key with the particular keycode is
pressed.

keyboar d_check_di rect (key) Returns whether the key with the particular
keycode is pressed by checking the hardware directly. The result is independent of
which application has focus. It allows for a few more checks. In particular you
can use keycodes vk_lIshift, vk lcontrol, vk lalt, vk rshift, vk rcontrol and
vk_ralt to check whether the left or right shift, control or alt key is pressed. (This
does not work under windows 95!).

mouse_check_but t on(nunb) Returns whether the mouse button is pressed
(use as values mb_none, mb_left, mb_middle, or mb_right).

107

The following routines can be used to manipulate the keyboard state:

keyboard_get num ock() Returnswhether the numlock is set.
keyboard_set numl ock(on) Sets (true) or unsets (false) the numlock. (Does
not work under Windows 95.)

keyboar d_key_ press(key) Simulates a press of the key with the indicated
keycode.

keyboard_key_rel ease(key) Smulates a release of the key with the
indicated keycode.

The following constants for virtual keycodes exist:

vk_nokey keycode representing that no key is pressed
vk_anykey keycode representing that any key is pressed
vk_| eft keycode for |eft arrow key

vk_ri ght keycode for right arrow key

vk _up keycode for up arrow key

vk _down keycode for down arrow key

vk_enter enter key

vk_escape escape key

vk_space space key

vk_shi ft shift key

vk_control control key

vk_al t altkey

vk _backspace backspace key

vk_tab tabkey

vk_home home key

vk_end end key

vk_del et e delete key

vk_insert insert key

vk_pageup pageup key

vk_pagedown pagedown key

vk_pause pause/break key

vk_printscreen printscreen/sysrq key
vk_f1...vk_f12 keycodesfor the function keys F1 to F12
vk_nunpado ... vk_nunpad9 number keys on the numeric keypad
vk_mul ti ply multiply key on the numeric keypad
vk_di vi de divide key on the numeric keypad

vk_add add key on the numeric keypad

vk_subtract subtract key on the numeric keypad
vk_deci mal decimal dot keys on the numeric keypad

For the letter keys use for example ord(' A"). (The capital letters.) The following
constants can only be used in keyboar d_check_di rect:

108

vk_| shi ft left shift key

vk_l control left control key
vk_l al t leftatkey

vk_rshi ft right shift key
vk_rcontrol right control key
vk _ralt rightalt key

They do not work on older version of Windows!

For example, assume you have an object that the user can control with the arrow keys you
can put the following piece of code in the step event of the object:

{

}

i f (keyboard _check(vk_left))
if (keyboard
i f (keyboard_check(vk_up))

i f (keyboard_check(vk_down))

+ !

check(vk_right))

EhEES

+ !

<< X X

Of courseitisalot easier to smply put this in the keyboard events.

There are three additional functions related to interaction.

keyboard_cl ear (key) Clears the state of the key. This means that it will no
longer generate keyboard events until it starts repeating.

nmouse_cl ear (but t on) Clears the state of the mouse button. This means that it
will no longer generate mouse events until the player releases it and presses it
again.

i o_cl ear () Clearsal keyboard and mouse states.

i o_handl e() Handle user io, updating keyboard and mouse status.

keyboar d_wai t () Waitstill the user presses a key on the keyboard.

31.1 Joystick support

There ae some events associated with joysticks. But to have full control over the
joysticks there is a whole set of functions to deal with joysticks. Game Maker supports up
to two joysticks. So all of these functions take ajoystick id as argument.

j oystick_exists(id) Returnswhether joystick id (1 or 2) exists.

j oystick_nanme(id) Returnsthe name of the joystick

j oystick_axes(id) Returnsthe number of axes of the joystick.
joystick_buttons(id) Returnsthe number of buttons of the joystick.

joystick _has _pov(id) Returns whether the joystick has point-of-view
capabilities.

joystick direction(id) Returns the keycode (vk numpadl to
vk_numpad9) corresponding to the direction of joystick id (1 or 2).
joystick_check_button(id, nunb) Returns whether the joystick button is
pressed (numb in the range 1-32).

109

joystick xpos(id) Returnsthe postion (-1 to 1) of the x-axis of joystick id.

j oystick_ypos(id) Returnsthe joysticks y-position.

j oystick_zpos(id) Returnsthe joysticks zposition (if it has a zaxis).
joystick_rpos(id) Returnsthe joysticks rudder position (or fourth axis).

j oysti ck_upos(id) Returnsthe joysticks u-position (or fifth axis).
joystick_vpos(id) Returns the joysticks v-position (or sixth axis).
joystick_pov(id) Returns the joysticks point-of view position. This is an
angle between 0 and 360 degrees. 0 is forwards, 90 to the right, 180 backwards
and 270 to the left. When no point-of-view direction is pressed by the user -1 is
returned.

110

Chapter 32 GML: Game graphics

An important part of a game is the graphics. Game Maker normally takes care of most of
this and for simple games there is need to worry about it. But sometimes you want to take
more control. For some aspects there are actions but from code you can control many
more aspects. This chapter describes all variables and functions available for this and
gives some more information about what is really happening.

32.1 Window and cursor

Default the game runs inside a centered window. The player can change thisto full screen
by pressing the <F4> key unless this was disabled. You can aso do this from within the
program using the following variable:

full _screen This variable is true when in full-screen mode. You can change
the mode by setting this variable to true or false.

Note that in full screen mode the caption and the score are shown on the screen. (This can
be avoided using the game options.) In full screen mode the image is either centered or
scaled. You can control this using the following variable:

scal e_wi ndow This variable indicates the percentage of scaling in windowed
mode. 100 indicates no scaling.

scal e_ful | Thisvariable indicates the percentage of scaling in fullscreen mode.
100 indicates no scaling. 0 indicates the maximum scaling possible.

Scaled mode can be slow on machines with a Slow processor or graphics card. Default
each game runs with a visible cursor. For lots of games you don’'t want this. To remove
the cursor, use the variable:

show _cur sor If set to false the cursor is made invisible inside the playing area,
otherwise it is made visible.

You can aso set the cursor to one of the many predefined cursors in windows using the
following function:

set _cursor(cur) Set the cursor to the given value. You can use the following
constant: cr_default, cr_none, cr_arrrow, cr_cross, cr_beam, cr_size nesw,
Ccr_size ns, cr_size nwse, cr_size we, cr_uparrow, cr_hourglass, cr_drag,
cr_nodrop, cr_hsplit, cr_vsplit, cr_multidrag, cr_sglwait, cr_no, cr_appstart,
cr_help, cr_handpoint, cr_size all.

By the way, note that it is very easy to make your own cursor object. Just create an object
with a negative depth that, in its step event, follows the mouse position.

To find out the resolution of the monitor you can use the following two read-only
variables:

111

noni t or _wi dt h The width of the monitor, in pixels.
nmoni t or _hei ght The height of the monitor, in pixels.

32.2 Sprites and images

Each object has a sprite associated with it. This is either a single image or it consists of
multiple image. For each instance of the object the program draws the corresponding
image on the screen, with its origin (as defined in the sprite properties) at the position
(x,y) of the instance. When there are multiple images, it cycles through the images to get
an animation effect. There are a number of variables that affect the way the image is
drawn. These can be used to change the effects. Each instance has the following
variables:

vi si bl e If visble is true (1) the image is drawn, otherwise it is not drawn.
Invisible instances are still active and create collision events; you only don’t see
them. Setting the visibility to false is useful for e.g. controller objects (make them
non-solid to avoid collision events) or hidden switches.

sprite_index Thisistheindex of the current sprite for the instance. You can
change it to give the instance a different sprite. As value you can use the names of
the different sprites you defined. Changing the sprite does not change the index of
the currently visible sub-image.

sprite_w dt h* Indicatesthe width of the sprite. This value cannot be changed
but you might wart to use it.

sprite_hei ght* Indicates the height of the sprite. This vaue cannot be
changed but you might want to use it.

sprite_xof fset* Indicates the horizontal offset of the sprite as defined in the
sprite properties. This value cannot be changed but you might want to use it.
sprite_yof fset* Indicates the vertica offset of the sprite as defined in the
sprite properties. This value cannot be changed but you might want to use it.

i mage_nunber * The number of sub-images for the current sprite for the instance
(cannot be changed).

i mge_i ndex When the image has multiple sub-images the program cycles
through them. This variable indicates the currently drawn sub-image (they are
numbered starting from 0). You can change the current image by changing this
variable. The program will continue cycling, starting at this new index.

i mge_si ngl e Sometimes you want a particular sub-image to be visible and
don't want the program to cycle through al of them. This can be achieved by
setting this variable to the index of the sub-image you want to see (first sub-image
has index 0). Give it a vaue —1 to cycle through the sub-images. This is useful
when an object has multiple appearances. For example, assume you have an
object that can rotate and you create a sprite that has sub-images for a number of
orientations (counter-clockwise). Then, in the step event of the object you can set

{

i mge_single = direction * i mage_nunber/ 360;

}

112

i mge_speed The speed with which we cycle through the sub-images. A value
of 1 indicates that each step we get the next image. Smaller values will switch
sub-images dower, drawing each sub-image multiple times. Larger values will
skip sub-images to make the motion faster.

dept h Normally images are drawn in the order in which the instances are created.
Y ou can change this by setting the image depth. The default value is 0, unless you
st it to a different value in the object properties. The higher the vaue the further
the instance is away. (You can aso use negative values.) Instances with higher
depth will lie behind instances with a lower depth. Setting the depth will
guarantee that the instances are drawn in the order you want (e.g. the plane in
front of the cloud). Background instances should have a high (positive) depth, and
foreground instances should have alow (negative) depth.

i mage_scal e A scde factor to make larger or smaller images. A vaue of 1
indicates the normal size. Changing the scale aso changes the values for the
image width and height and influences collision events as you might expect.
Redlize that scaled images (in particular when you make them smaller) take more
time to draw. Changing the scale can be used to get a 3-D effect.

i mge_al pha Transparency (alpha) value to use when drawing the image. A
value of 1 isthe norma setting; a value of 0 is completely transparent. Use with
care. Drawing partially transparent images takes a lot of time and will Slow down
the game.

bbox_| eft* Left side of the bounding box used of the image of the instance
(taking scaling into account).

bbox_ri ght* Right side of the bounding box of the instance image

bbox_t op* Top side of the bounding box of the instance image.

bbox_bot t ont Bottom side of the bounding box of the instance image.

32.3 Backgrounds

Each room can have up to 8 backgrounds. Also it has a background color. All aspects of
these backgrounds you can change in a piece of code using the following variables (note
that some are arrays that range from 0 to 7, indicating the different backgrounds):

backgr ound_col or Background color for the room.

backgr ound_showcol or Whether to clear the window in the background color.
background_vi si bl e[0..7] Whether the particular background image is
visible.

background_f oreground[0..7] Whether the background is actualy a
foreground.

background_i ndex[0. . 7] Background image index for the background.
background_x[0. . 7] X position of the background image.

background_y[0..7] Y position of the background image.

background_wi dt h[0..7] * Width of the background image.

background_hei ght [0..7] * Height of the background image.

113

background_htil ed[0. . 7] Whether horizontally tiled.

background_vtil ed[0..7] Whether vertically tiled.
background_hspeed[0..7] Horizontal scrolling speed of the background
(pixels per step).

backgr ound_vspeed[0. . 7] Vertica scrolling speed of the background (pixels
per step).

background_al pha[0. . 7] Transparency (apha) value to use when drawing
the background. A value of 1 is the normal setting; a value of 0 is completely
trangparent. Use with care. Drawing partialy transparent backgrounds takes a lot
of time and will ow down the game.

32.4 Tiles

As you should know you can add tiles to rooms. A tileis a part of a background resource.
Tiles are just visible images. They do not react to events and they do not generate
collisions. As aresult, tiles are handled a lot faster than objects. Anything that does not
need events or collisions can best be done through tiles. Also, often one better uses a tile
for the nice graphics while a ssimple object is used to e.g. generate the collision events.

You actually have more control over tiles than you might think. You can add them when
designing the room but you can also add them during the running of the game. You can
change their position, and even scale them or make them partially transparent. A tile has
the following properties:
- background. The background resource from which the tile is taken.

left, top, width, height. The part of the background that is used.

X,y. The position of the top left corner of the tile in the room.

depth. The depth of the tile. When designing a room you can only indicate

whether to use background tiles (with depth 1000000) or foreground tiles (with

depth —1000000) but you can actually choose any depth you like, making tiles

appear between object instances.

visible. Whether the tile is visible.

xscale, yscale. Each tile can be drawn scaled (default is 1).

alpha. An apha value indicating tile transparency. 1 = not transparent, 0 = fully

transparent. You should use this with care because partially transparent tiles are

very slow to draw and can lead to problems on certain systems.
To change the properties of a particular tile you need to know its id. When you add tiles
when creating rooms the id is shown in the information bar at the bottom. There is also a
function to find the id of atile a a particular position.

The following functions exist that deal with tiles:
til e_add(background, | eft,top, w dth, hei ght, x,y,depth) Adds a
new tile to the room with the indicated values (see above for their meaning). The

function returns the id of the tile that can be used later on.
tile_del ete(id) Deetesthetile with the givenid.

114

tile find(x,y,foreground) Returns the id of the tile at position (x,y).
When no tile exists at the position —1 is returned. When foreground is true, only
tiles with depth < O ae returned. Otherwise only tiles with depth >= 0 are
returned. When multiple foreground or background tiles exist at the position the
first oneis returned.

tile _delete_at(x,y,foreground) Deletesthetiles at position (x,y). When
foreground is true, only tiles with depth < 0 are deleted. Otherwise only tiles with
depth >= 0 are deleted. When multiple (foreground or background) tiles exist at
the position all of them are deleted.

tile_exists(id) Returnswhether atile with the given id exists.

tile_get_ x(id) Returnsthe xposition of the tile with the given id.
tile_get_y(id) Returnsthe y-postion of the tile with the given id.
tile_get_l|eft(id) Returnsthe left value of the tile with the given id.
tile_get top(id) Returnsthetop value of thetile with the given id.
tile_get_width(id) Returnsthe width of the tile with the given id.
tile_get _height(id) Returnsthe height of the tile with the given id.
tile_get _depth(id) Returnsthe depth of the tile with the given id.
tile_get_visible(id) Returnswhether the tile with the given id is visible.
tile _get xscal e(id) Returnsthe xscae of the tile with the given id.
tile_get_yscal e(id) Returnstheyscae of the tile with the given id.
tile_get background(id) Returns the background of the tile with the given
id.

tile_get_al pha(id) Returnsthe aphavalue of the tile with the given id.

tile_set_position(id,Xx,y) Setsthe position of the tile with the given id.
tile set_region(id,left,right,w dth, hei ght) Sets the region of the
tile with the given id in its background.

tile_set_background(id, background) Sets the background for the tile
with the given id.

tile_set_visible(id,visible) Sets whether the tile with the given id is
visible.

tile_set _depth(id,depth) Setsthe depth of the tile with the given id.
tile_set_scal e(id, xscal e, yscal e) Sets the scaling of the tile with the
given id.

tile_set _al pha(id, al pha) Setsthe apha value of the tile with the given id.

32.5 Drawing functions

It is possible to let objects look rather different from their image. There is a whole
collection of functions available to draw different shapes. Also there are functions to
draw text. Y ou can only use these in the drawing event of an object; these functions don’t
make any sense anywhere else in code (although, see Section 32.8). Please redlize that the
graphics hardware in computers only makes the drawing of images fast. So any other
drawing routine will be relatively slow. Also Game Maker is optimized towards drawing

115

images. So avoid other drawing rouines as much as possible. (Whenever possible, create
a bitmap instead.) Also redlize that collisions between instances are determined by their
sprites (or masks) and not by what you actualy draw. The following image related
drawing functions exist:

draw_sprite(n,ing, x,y) Draws subimage img (-1 = current) of the sprite
with index n with its origin at position (X,y).

draw sprite_scal ed(n,ing, x,y,s) Drawsthe sprite scaled with afactor s.
draw sprite_stretched(n,ing, x,y,w h) Draws the sprite stretched such
that it fills the region with top-left corner (x,y) and width w and height h.

draw sprite_transparent(n,ing, x,y,s, al pha) Draws the sprite scaled
with factor s merged with its background. apha indicates the transparency factor.
A vaue of 0 makes the sprite completely transparent. A value of 1 makes it
completely solid. This function can create great effect (for example partialy
transparent explosions). It is though very sow because it is done in software and,
hence, should be used with care.

draw sprite_tiled(n,ing,x,y) Draws the sprite tiled such that it fills the
entire room. (x,y) is the place where one of the spritesis drawn.

draw_background(n, x, y) Draws the background with index n at position
(xy).

dr aw_background_scal ed(n, x, y, s) Draws the background scaled.
draw_background_stret ched(n, x, y, w, h) Draws the background stretched
to the indicated region.

draw_background_transparent(n, x, Yy, s, al pha) Draws the background
scales with factor s and transparency apha (0-1) (slow!).

draw_background_til ed(n, x,y) Draws the background tiled such that it
fills the entire room.

The following drawing functions draw basic shapes. They use a number of properties, in
particular the brush and pen color that can be set using certain variables.

draw _pi xel (x,y) Drawsapixel at (x,y) in the brush color.

dr aw_get pi xel (x, y) Returnsthe color of the pixel at (x,y).
draw_fill (x,y) Food fill from position (x,y) in the brush color.
draw | ine(x1,yl, x2,y2) Drawsalinefrom (x1,yl) to (x2,y2).
draw circl e(x,y, r) Drawsacircleat (x,y) with radiusr.

draw el | i pse(x1,yl, x2,y2) Drawsan dlipse.

draw rectangl e(x1, y1, x2,y2) Drawsarectangle.

draw _roundrect (x1, y1, x2, y2) Drawsarounded rectangle.
draw triangl e(x1, yl1, x2,y2, x3, y3) Drawsatriangle.
draw_arc(x1,yl, x2,y2, x3,y3, x4, y4) Drawsan arc of an ellipse.
draw _chord(x1, y1, x2,y2, x3,y3, x4, y4) Drawsachord of an ellipse.
draw _pi e(x1,y1, x2,y2, x3,y3, x4, y4) Drawsapie of an elipse.

116

draw _button(x1, y1, x2, y2, up) Draws a button, up indicates whether up (1)
or down (0).

draw text (x,y, string) Draws the string a position (x,y). A # symbol or
carriage return chr(13) or linefeed chr(10) are interpreted as newline characters. In
this way you can draw multi-line texts. (Use \# to get the # symbol itself.)

draw text _ext(x,Yy, string, sep,w Smilar to the previous routine but you
can specify two more things. First of al, sep indicates the separation distance
between the lines of text in a multiline text. Use -1 to get the default distance. Use
w to indicate the width of the text in pixels. Lines that are longer than this width
are split-up at spaces or — signs. Use -1 to not split up lines.

draw_text _sprite(x,y,string,sep,w,sprite,firstchar, scal e)
Drawing text using the functions above is relatively costly. This function works
exactly the same as the previous one but takes its character images from a sprite.
This sprite must have a subimage for each character. The first character is indicate
with the argument firstchar. From this character on the characters should follow
the ASCI order. You can check the character map tool of windows to see the
correct order of the characters. If you only need the first few (e.g. up to the
numbers or the uppercase characters) you don't need to provide the other
characters. scale indicates the scale factor used (1 is the norma size). Be careful
will scaling though, it can slow down the game considerably. Please realize that
these sprites tend to be large. Also, you obviously don’t need precise collision
checking for them.

dr aw_pol ygon_begi n() Start describing a polygon for drawing.

draw_pol ygon_vertex(x,y) Addvertex (x,y) to the polygon.

draw_pol ygon_end() End the description of the polygon. This function
actually drawsiit.

Y ou can change a number of settings, like the color of the lines (pen), region (brush) and
font, and many other font properties. The effect of these variables is globa! So if you
change it in the drawing routine for one object it also applies to other objects being drawn
later. You can also use these variables in other event. For example, if they don’t change,
you can set them once at the start of the game (which is alot more efficient).

brush_col or Color used to fill shapes. A whole range of predefined colors is

available:
c_aqua
c_bl ack
c_bl ue
c_dkgray
c_fuchsia
c_gray
c_green
c_lime
c_ltgray
C_mar oon
C_havy
c_olive

117

c_purple

c red

c_silver

c_teal

c_white

c_yel | ow
Other colors can be made using the routine make_col or (red, gr een, bl ue),
where red, green and blue must be values between 0 and 255.
brush_styl e Current brush style used for filling. The following styles are
available:

bs_hol | ow

bs solid

bs_bdi agonal

bs_f di agonal

bs _cross

bs_di agcross

bs_hori zont al

bs_verti cal
pen_col or Color of the pen to draw boundaries.
pen_si ze Size of the penin pixels.
font _col or Color of the font to use.
f ont _si ze Size of the font to use (in points).
f ont _nane Name of the font (a string).
font _styl e Style for the font. The following styles are available (you can add
them if you want the combination of the styles):

fs_nornal

fs_bold

fs italic

fs underline

fs_strikeout
f ont _angl e Angle with which the font is rotated (0-360 degrees). For example,
for vertical text use value 90.
font _align Alignment of the text w.r.t. the position given. The following
values can be used

fa_left

fa_center

fa right

A few miscellaneous functions exist;

string_w dth(string) Width of the string in the current font as it would
drawn using the draw_text() function. Can be used for precisely positioning
graphics.

string_hei ght (string) Height of the string in the current font as it would
drawn wsing the draw_text() function.

string_w dth_ext(string, sep, w Width of the string in the current font as
it would drawn using the draw_text_ext() function. Can be used for precisely
positioning graphics.

118

string_hei ght _ext(string, sep, w Height of the string in the current font
as it would drawn using the draw_text_ext() function.

screen_gamma(r, g, b) Sets the gamma correction vaues. r,g,b must be in the
range from —1 to 1. The default is 0. When you use a value smaller than O that
particular color becomes darker. If you use a vaue larger than O that color
becomes lighter. Most of the time you will keep the three values the same. For
example, to get the effect of lightning you can temporarily make the three values
close to 1. This function works only in exclusive mode!

screen_save(fnane) Saves a bmp image of the screen in the given filename.
Useful for making screenshots.

screen_save_part(fnane, |l eft,top, right,bottonm) Saves part of the
screen in the given filename.

32.6 Views

As you should know you can define up to eight different views when designing rooms. In
this way you can show different parts of the room at different places on the screen. Also,
you can make sure that a particular object always stays visible. Y ou can control the views
from within code. Y ou can neke views visible and invisible and change the place or size
of the views on the screen or the position of the view in the room (which is in particular
useful when you indicated no object to be visible), you can change the size of the
horizontal and vertical border around the visible object, and you can indicate which
object must remain visible in the views. The latter is very important when the important
object changes during the game. For example, you might change the main character
object based on its curent status. Unfortunately, this does mean that it is no longer the
object that must remain visible. This can be remedied by one line of code in the creation
event of al the possible main objects (assuming this must happen in the first view):

{

vi ew_obj ect[0] = object_index;

}

The following variables exist that influence the view. All, except the first two are arrays
ranging from O (the first view) to 7 (the last view).

vi ew_enabl ed Whether views are enabled or not.

vi ew_current* The currently drawn view (0-7). Use this only in the drawing
event. You can for example check this variable to draw certain things in only one
view. Variable cannot be changed.

vi ew_vi si bl e[0. . 7] Whether the particular view is visible on the screen.
view | eft[0..7] Leftposition of the view in the room.

vi ew_top[0. . 7] Top position of the view in the room.

vi ew_wi dt h[0.. 7] Width of the view (in pixels).

vi ew_hei ght[0. . 7] Height of the view (in pixels).

vi ew X[0.. 7] X-position of the view on the screen.

vi ew_y[0.. 7] Y-positionof the view on the screen.

119

vi ew_hborder[0..7] Size of horizonta border around the visible object (in
pixels).

vi ew_vborder[0..7] Sizeof vertica border around visible object (in pixels).
vi ew_hspeed[0. . 7] Maximal horizontal speed of the view.

vi ew_vspeed[0. . 7] Maxima vertical speed of the view.

vi ew_obj ect[0.. 7] Object whose instance must remain visible in the view. If
there are multiple instances of this object only the first one is followed. You can
also assign an instance id to this variable. In that case the particular instance is
followed.

Note that the size of the image on the screen is decided based on the visible views at the
beginning of the room. If you change views during the game, they might no longer fit on
the screen. The screen size though is not adapted automaticaly. So if you need this you
have to do it yourself, using the following variables:

screen_wi dt h Width of the image on the screen, that is, the area in which we

draw. When there are no views, thisisthe same asr oom wi dt h.
screen_hei ght Height of the image on the screen.

32.7 Transitions

As you know, when you move from one room to another you can indicate a transition.
You can also set the trangition for the next frame without moving to another room using
the variable called t r ansi t i on_ki nd. If youassign a value between 1 and 17 to it the
corresponding transition is used (these are the same transitions you can indicate for the
rooms). A value of O indicates no transition. It only affects the next time a frame is
drawn. Y ou can aso set these variables before going to the next room using code.

transi ti on_ki nd Indicatesthe next frame transition (0-17).
transition_tine Tota time used for the transition (in milliseconds).
transi ti on_st eps Number of steps for the transition.

32.8 Repainting the screen

Normaly at the end of each step the room is repainted on the screen. But in rare
circumstances you need to repaint the room at other moments. This happens when your
program takes over the control. For example, before deeping a long time a repaint might
be wanted. Also, when your code displays a message and wants to wait for the player to
press a key, you need arepaint in between. There are two different routines to do this.

screen_redraw() Redrawsthe room by caling all draw events.
screen_refresh() Refreshes the screen using the current room image (not
performing drawing events).

To understand the second function, you will need to understand a bit better how drawing

works internally. There is internally an image on which al drawing happens. This image
is not visible on the screen. Only at the end of a step, after all drawing has taken place,

120

the screen image is replaced by thisinternal image. (Thisis called double buffering.) The
first function redraws the internal image and then refreshes the screen image. The second
function only refreshes the image on the screen.

Now you should also realize why you couldn't use drawing actions or functions in other
events than drawing events. They will draw things on the internal image but these worit
be visible on the screen. And when the drawing events are performed, first the room
background is drawn, erasing all you did draw on the internal image. But when you use
screen_refresh() after your drawing, the updated image will become visible on the
screen. So, for example, a script can draw some text on the screen, call the refresh
function and then wait for the player to press a key, like in the following piece of code.

{

draw_text (screen_wi dth/2,100,' Press any key to continue.');
screen_refresh();
keyboard _wait();

}

Please redlize that, when you draw in another event than the drawing event, you draw
simply on the image, not in a view! So the coordinates you use are the same as if there
are no views.

Be careful when using this technique. Make sure you understand it first and realize that
refreshing the screen takes some time.

121

Chapter 33 GML: Sound and music

Sound plays a crucia role in computer games. There are two different types of sounds:
background music and sound effects. Background music normally consists of a long
piece of midi music that is infinitely repeated. Sound effects on the other hand are short
wave files. To have immediate effects, these pieces are stored in memory. So you better
make sure that they are not too long.

Sounds are added to your game in the form of sound resources. Make sure that the names
you use are valid variable names. There is one aspect of sounds that might be puzzling at
first, the number of buffers. The system can play a wave file only once at the same time.
This means that when you use the effect again before the previous sound was finished,
the previous sound is stopped. This is not very appealing. So when you have a sound
effect that is used multiple times simultaneously (like e.g. a gun shot) you need to store it
multiple times. This number is the number of buffers. The more buffers for a sound, the
more times it can be played simultaneoudly, but it aso uses more memory. So use this
with care. Game Maker automatically uses the first buffer available, so once you
indicated the number you don’t have to worry about it anymore.

There are five basic functions related to sounds, two to play a sound, one to check
whether a sound is playing, and two to stop sounds. Most take the index of the sound as
argument. The name of the sound represents its index. But you can aso store the index in
avariable, and use that one.

sound_pl ay(i ndex) Playsthe indicates sound once.

sound_| oop(i ndex) Plays the indicates sound, looping continuoudly.
sound_st op(i ndex) Stops the indicates sound. If there are multiple sounds
with this index playing simultaneously, all will be stopped.

sound_stop_al | () Stopsall sounds.

sound_i spl ayi ng(i ndex) Returnswhether the indicates sound is playing.

It is possible to use further sound effects. These only apply to wave files, not to midi
files. When you want to use specia sound effects, you have to indicate this in the
advanced tab of the sound properties by checking the appropriate box. Note that sounds
that enable effects take more resources than other sounds. So only check this box when
you use the calls below. There are three types of sound effects. First of all you can change
the volume. A value of 0 means no sound at al. A vaue of 1 isthe volume of the original
sound. (You cannot indicate a volume larger than the origina volume.) Secondly, you
can change the pan, that is, the direction from which the sound comes. A value of 0 is
completely at the left. A value of 1 indicates completely at the right. 0.5 is the default
value that is in the middle. You can use panning to e.g. hear that an object moves from
left to right. Finally you can change the frequency of sound. This can be used to e.g.
change the speed of an engine. A value of 0 is the lowest frequency; a value of 1 is the
highest frequency.

sound_vol une(i ndex, val ue) Changes the volume for the indicates sound (0

=low, 1 = high).

122

sound_pan(i ndex, val ue) Changes the pan for the indicates sound (0 = left, 1
=right).

sound_f requency(i ndex, val ue) Changes the frequency for the indicates
sound (0 = low, 1 = high).

Sound is a complicated matter. Midi files are played using the standard multimedia
player. Only one midi file can be played at once and there is no support for sound effects.
For wave files Game Maker uses DirectSound. In this case al wave files are stored in
memory and can have effects. Game Maker actually aso tries to play other music files
when you specify them, in particular mp3 files. It uses the standard multimedia player for
this. Be careful though. Whether this works depends on the system and sometimes on
other software installed or running. So you are recommended not to use mp3 files when
you want to distribute your games.

There are aso a number of functions dealing with playing music from a CD:

cd_init() Must be cdled before using the other functions. Should also be
called when a CD is changed (or simply from time to time).

cd_present () Returns whether a CD is present in the default CD drive.
cd_nunber () Returnsthe number of tracks on the CD.

cd_pl ayi ng() Returnswhether the CD is playing.

cd_paused() Returnswhether the CD is paused or stopped.

cd_track() Returnsthe number of the current track (1=the first).

cd_| engt h() Returns the length of the total CD in milliseconds.

cd_t rack_l engt h(n) Returnsthe length of track n of the CD in milliseconds.
cd_posi tion() Returnsthe current position on the CD in milliseconds.
cd_track_position() Returnsthe current position in the track being played in
milliseconds.

cd_play(first,last) Telsthe CD to play tracks first until last. If you want
to play the full CD give 1 and 1000 as arguments.

cd_st op() Stops playing.

cd_pause() Pausesthe playing.

cd_resune() Resumesthe playing.

cd_set _posi tion(pos) Setsthe position on the CD in milliseconds.

cd_set _track_position(pos)Sets the position in the current track in
milliseconds.

cd_open_door () Opensthe door of the CD player.

cd_cl ose_door () Closesthe door of the CD player.

There is one very genera function to access the multimedia functionality of windows.
MCI _command(st r) This functions sends the command string to the windows
multimedia system using the Media Control Interface (MCI). It returns the return

string. You can use this to control all sorts of multimedia devices. See the
Windows documentation for information in how to use this command. For

123

example MCl _command(' pl ay cdaudio from 1') playsacd (after you have
correctly initialized it using other commands. This function is only for advanced
use!

124

Chapter 34 GML: Splash screens, highscores, and other
pPOp-ups

Many games have so-called splash sreen. These screens show a video, an image, or
some text. Often they are used at the beginning of the game (as an intro), the beginning of
alevel, or at the end of the game (for example the credits). In Game Maker such splash
screens with text, images or video can be shown at any moment during the game. The
game is temporarily paused while the splash screen is shown. These are the functions to
use:

show t ext (f nane, ful |, backcol , del ay) Shows a text splash screen.
fname is the name of the text file (.txt or .rtf). You must put this file in the folder
of the game yourself. Also when you create a stand-alone version of your game,
you must not forget to add the file there. full indicates whether to show it in full
screen mode. backcol is the background color, and delay is the delay in seconds
before returning to the game. (The player can aways click with the mouse in the
screen to return to the game.)

show i mage(f nane, ful |, del ay) Shows an image splash screen. fname is
the name of the image file (only .bmp, .jpgand .wmf files). Y ou must put thisfile
in the folder of the game yourself. full indicates whether to show it in full screen
mode. delay is the delay in seconds before returning to the game.

show_vi deo(f nane, ful |, 1 oop) Shows a video splash screen. fname is the
name of the video file (.avi,.mpg). Y ou must put thisfile in the folder of the game
yourself. full indicates whether to show it in full screen mode. loop indicates
whether to loop the video.

show_i nf o() Displays the game information form.

| oad_i nf o(fnanme) Load the game information from the file named fhame.
This should be an rtf file. This makes it possible to show different help files at
different moments. You can use the data file resource to put these file inside the
game.

A number of other functions exist to pop up messages, questions, a menu with choices, or
adialog in which the player can enter a number, a string, or indicate a color or file name:

show_nessage(str) Displaysadiaog box with the string as a message.

show nessage_ext (str, but 1, but 2, but 3) Displays a dialog box with the
string as a message and up to three buttons. Butl, but2 and but3 contain the button
text. An empty string means that the button is not shown. In the texts you can use
the & symbol to indicate that the next character should be used as the keyboard
shortcut for this button. The function returns the number of the button pressed (0
if the user presses the Esc key).

show_question(str) Displays a question; returns true when the user selects
yes and false otherwise.

get _i nteger(str, def) Asksthe player in adialog box for a number. str is the
message. def is the default number shown.

125

get _string(str,def) Asksthe player in a didog box for a string. gtr is the
message. def is the default value shown.

message_backgr ound(back) Sets the background image for the pop- up box
for any of the functions above. back must be one of the backgrounds defined in
the game.

message_but t on(spr) Sets the sprite used for the buttons in the pop-up box.
spr must be a sprite consisting of three images, the first indicates the button when
it is not pressed and the mouse is far away, the second indicates the button when
the mouse is above it but not pressed and the third is the button when it is pressed.
message_t ext _font (nane, si ze, col or, styl e) Setsthe font for the text in
the pop-up box.

nmessage_button_font (nane, si ze, col or, styl e) Sets the font for the
buttons in the pop- up box.

message_i nput _f ont (nane, si ze, col or, styl e) Setsthe font for the input
field in the pop- up box.

nmessage_nouse_col or (col) Sets the color of the font for the buttons in the
pop-up box when the mouse is above it.

message_i nput _col or(col) Sets the color for the background of the input
filed in the pop- up box.

message_capti on(show, str) Sets the caption for the pop-up box. show
indicates whether a border must be shown (1) or not (0) and str indicates the
caption when the border is shown.

message_posi tion(x,y) Setsthe position of the pop-up box on the screen.
nmessage_si ze(w, h) Fixes the size of the pop-up box on the screen. If you
choose O for the width the width of the image is used. If you choose O for the
height the height is calculated based on the number of lines in the message.
show_nmenu(str, def) Shows a popup menu. str indicates the menu text. This
consists of the different menu items with a vertical bar between them. For
example, str = 'menu0jmenullmenu2. When the first item is selected a O is
returned, etc. When the player selects no item, the default value def is returned.
show_menu_pos(x,y, str,def) Shows a popup menu as in the previous
function but at position X,y on the screen.

get _col or (defcol) Asksthe player for a color. defcol is the default color. If
the user presses Cancel the value -1 is returned.

get _open_filenane(filter,fnane) Asksthe player for afilename to open
with the given filter. The filter has the form 'nameljmaskl|jname2jmask2|...". A
mask contains the different options with a semicolon between them. * means any
string. For example: ‘bitmaps* .omp;*.wmf'. If the user presses Cancel an empy
string is returned.

get _save filenane(filter,fnane) Asks for a filename to save with the
given filter. If the user presses Cancel an empy string is returned.

get _directory(dnanme) Asksfor adirectory. dname is the default name. If the
user presses Cancel an empy string is returned.

get _directory_alt(capt,root) An dternative way to ask for a directory.
capt is the caption to be show. root is the root of the directory tree to be shown.

126

Use the empty string to show the whole tree. If the user presses Cancel an empy
string is returned.

show error(str, abort) Displays a standard error message (and/or writes it
to the log file). abort indicates whether the game should abort.

One specia pop-up is the highscore list that is maintained for each game. The following
functions exist:

hi ghscor e_show(nunb) Shows the highscore table. numb is the new score. If
this score is good enough to be added to the list, the player can input a name. Use

—1 to simple display the current list.
hi ghscor e_show_ext (nunb, back, bor der, col 1, col 2, nane, si ze)

Shows the highscore table. numb is the new score. If this score is good enough to
be added to the list, the player can input a name. Use —1 to ssimple display the
current list. back is the background image to use, border indicates whether or not
to show the border. coll is the color for the new entry, col2 the color for the other
entries. name is the name of the font to use, and size is the font size.

hi ghscore_cl ear () Clearsthe highscore list.

hi ghscor e_add(str, nunb) Adds a player with name str and score numb to
the ligt.

hi ghscore_add_current () Adds the current score to the highscore list. The
player is asked to provide a name.

hi ghscor e_val ue(pl ace) Returns the score of the person on the given place
(1-10). This can be used to draw your own highscore list.

hi ghscor e_nane(pl ace) Returns the name of the person on the given place
(1-10).

draw_hi ghscore(x1, y1, x2, y2) Draws the highscore table in the room in the
indicated box, using the current font.

Please redlize that none of these pop-ups can be shown when the game runs in exclusive
graphics mode!

127

Chapter 35 GML: Resources

In Game Maker you can define various types of resources, like sprites, sounds, datafiles,
objects, etc. In this chapter you will find a number of functions that act on the resources.
Before you start using these, maker sure you understand the following. Wherever you
change a resource the original data is gone! This means that the resource is changed for
all instances that use it. For example, if you change a sprite al instances that use this
sprite will have it changed during the remainder of the game. Restarting a room or
restarting the game will not bring the resource back to its original form! Also when
saving the game situation the changed resources are NOT saved. If you load a saved
game it is your responsibility to have the resource back in the appropriate state.

35.1 Sprites
The following functions will give you information about a sprite:

sprite_exists(ind) Returnswhether a sprite with the given index exists.
sprite_get_nane(ind) Returnsthe name of the sprite with the given index.
sprite_get_nunber (ind) Returnsthe number of subimages of the sprite with
the given index.

sprite_get_wi dt h(ind) Returnsthe width of the sprite with the given index.
sprite_get height(ind) Returns the height of the sprite with the given
index.

sprite_get_transparent (i nd) Returns whether the sprite with the given
index is transparent.

sprite_get_xoffset(ind) Returns the x-offset of the sprite with the given
index.

sprite_get_yoffset(ind) Returns the y-offset of the sprite with the given
index.

sprite_get bbox_| eft(ind) Returnsthe left sde of the bounding box of the
sprite with the given index.

sprite_get_bbox_right (ind) Returns the right side of the bounding box of
the sprite with the given index.

sprite_get_bbox_top(ind) Returns the top side of the bounding box of the
sprite with the given index.

sprite_get_ bbox_botton(ind) Returns the bottom side of the bounding box
of the sprite with the given index.

sprite_get_precise(ind) Returns whether the sprite with the given index
uses precise collision checking.

sprite_get_videormen(i nd) Returns whether the sprite with the given index
uses video memory.

sprite_get_| oadonuse(i nd) Returnswhether the sprite with the given index
is loaded only on use.

Sprites take lots of memory. To draw them fast enough it is important to store them in
video memory. As indicated in Chapter 14 you can indicate which sprites should be

128

stored in video memory. Also you can indicate that certain sprites should only be loaded
when needed. These sprites will be discarded again at the end of the level. You can
partialy control this process from code. The following functions exist:

sprite_di scard(nunb) Frees the (video) memory used for the sprite. If the
sprite has the load-onuse property set it will be completely removed. Otherwise,
a copy is maintained in normal memory (of which there is normally enough) such
that the sprite can be restored when needed.

sprite_restore(nunb) Restores the sprite in (video) memory. Normally this
happens automatically when the sprite is needed. But this might cause a small
hick-up, in particular when load-on-use is set and the sprite is large. So you might
want to force this for example at the beginning of the room in which the sprite is
needed.

di scard_al | () Discard al sprites, backgrounds and sounds that have load-on-
use set.

When a game uses a lot of different large sprite images, this makes the game file large
and, hence, the loading dow. Also, if you want to keep them in memory while you need
them, it increases the amount of memory required considerably. Alternatively, you can
distribute the sprite images with the game (as .bmp, .jpg, or .gif files, no other formats
allowed) and load them during the game. There are three routines for this:

sprite_add(fname, i mgnunb, preci se, transpar ent, vi deomrem | oadon
use, xori g, yori g) Add the image stored in the file fname to the set of sprite
resources. Only bmp, jpg and gif images can be dealt with. When the image is a
bmp or jpg image it can be a strip containing a number of subimages for the sprite
next to each other. Use imgnumb to indicate their number (1 for a single image).
For (animated) gif images, this argument is not used; the number of images in the
gif file is used. precise indicates whether precise collision checking should be
used. trangparent indicates whether the image is partialy transparent, videomem
indicates whether the sprite must be stored in videomemory, and loadonuse
indicates whether the sprite should only be loaded when wsed. xorig and yorig
indicate the position of the origin in the sprite. The function returns the index of
the new sprite that you can then use to draw it or to assign it to the variable
sprite_index of an instance. When an error occurs -1 is returned.
sprite_replace(ind, f nane, i ngnumnb, pr eci se, transpar ent, vi deone
m | oadonuse, xori g, yori g) Same as above but in this case the sprite with
index ind is replaced. The function returns whether it is successful.
sprite_del ete(ind) Deletes the sprite from memory, freeing the memory
used. (It can no longer be restored.)

WARNING: When you save the game during playing, added or replaced sprites are NOT
stored with the save game. So if you load the saved game later, these might not be there
anymore. Also there are some copyright issues with distributing gif files with your
(commercial) application. So better don't use these.

129

35.2 Sounds
The following functions will give you information about a sound:

sound_exi st s(i nd) Returns whether a sound with the given index exists.
sound_get nane(i nd) Returns the name of the sound with the given index.
sound_get _ki nd(i nd) Returns the kind of the sound with the given index
(O=wave, 1=midi, 2=mp3, 10=unknown).

sound_get _buffers(ind) Returnsthe number of buffers of the sound with the
given index.

sound_get _effect(ind) Returns whether the sound with the given index
allows for specia effects.

sound_get _| oadonuse(i nd) Returns whether the sound with the given index
is loaded only on use.

Sounds use many resources and most systems can store and play only alimited number of
sounds. If you make a large game you would like to have more control over which sounds
are loaded in memory at what times. You can use the load-on-use option for sounds to
make sure sounds are only loaded when used. This though has the problem that you
might get a small hick-up when the sound is used first. Also, it does not help much when
you have just one large room. For more control you can use the following functions.

sound_di scar d(i ndex) Freesthe memory used for the indicated sound.
sound_rest or e(i ndex) Restores the indicated sound in memory.

di scard_al | () Discard al sprites, backgrounds and sounds that have |oad-on-
use set.

When your game uses many different complicated sounds, for example, as background
music, you better not store them dl in the game. This makes the game file very large.
Instead, it is better to provide them as separate files with the game and load them when
they are needed. This will aso reduce the loading time of the game. The following three
routines exist for this:

sound_add(f nane, buf fers, ef fects, | oadonuse) Adds a sound resource
to the game. fname is the name of the sound file. buffers indicates the number of
buffers to be used, and effects and loadonuse indicate whether sound effects are
allowed and whether the sound should be stored in internal memory (true or
false). The function returns the index of the new sound, which can be used to play
the sound. (-1 if an error occurred, e.g. the file does not exist).

sound_r epl ace(i ndex, f nane, buffers, ef fects, | oadonuse) Same as
the previous function but this time not a new sound is created but the existing
sound index is replaced, freeing the old sound. Returns whether correct.
sound_del et e(i ndex) Deletes the indicated sound, freeing al memory
associated with it. It can no longer be restored.

130

WARNING: When you save the game during playing, added or replaced sounds are NOT
stored with the save game. So if you load the saved game later, these might not be there
anymore.

35.3 Backgrounds
The following functions will give you information about a background:

background_exi st s(i nd) Returns whether a background with the given index
exists.

background_get nanme(i nd) Returns the name of the background with the
given index.

background_get _wi dt h(i nd) Returns the width of the background with the
given index.

backgr ound_get _hei ght (i nd) Returns the height of the background with the
given index.

background_get transparent (i nd) Returns whether the background with
the given index is transparent.

background_get _vi deormen(i nd) Returns whether the background with the
given index uses video memory.

background_get _| oadonuse(i nd) Returns whether the background with the
given index is loaded only on use.

Background images take lots of memory. To draw them fast enough it can be useful to
store them in video memory. As indicated in Chapter 18 you can indicate which
backgrounds should be stored in video memory. Also you can indicate that certain
backgrounds should only be loaded when needed. These backgrounds will be discarded
again at the end of the level. You can partially control this process from code. The
following functions exist:

background_di scard(nunb) Frees the (video) memory used for the
background image. If the background has the load-on-use property set it will be
completely removed. Otherwise, a copy is maintained in normal memory (of
which there is normally enough) such that the background can be restored when
needed.

background_restore(nunb) Restores the background image in (video)
memory. Normally this happens automatically when the background is needed.
But this might cause a small hick-up, in particular when load-on-use is set and the
background is large. So you might want to force this for example at the beginning
of the room in which the background is needed.

di scard_al | () Discard al sprites, backgrounds and sounds that have |oad-on-
use set.

When a game uses a lot of different background images, this makes the game file large

and, hence, the loading dow. Also, if you want to keep them in memory while you need
them, it increases the amount of memory required considerably. Alternatively, you can

131

distribute the background images with the game (as .bmp, .jpg, or .gif files; no other
formats alowed) and load them during the game. There are three routines for this.
Another use is when you want to let the player choose a background. Also, you might
want to save the image from within the game and use that later as a background (e.g. for a
painting program). Finally, complicated backgrounds, stored as jpg files use a lot less
memory. Here are the functions:

backgr ound_add(f nane, t ranspar ent, vi deonem | oadonuse) Add the
image stored in the file fname to the set of background resources. Only bmp and
jpg images can be dealt with. transparent indicates whether the image is partially
transparent, videomem indicates whether the background must be stored in
videomemory, and loadonuse indicates whether the background should only be
loaded when used. The function returns the index of the new background that you
can then use to draw it or to assign it to the variable background _index[0] to make

it visble in the current room. When an error occurs -1 is returned.
background_r epl ace(i nd, f nane, t ranspar ent, vi deomrem | oadonuse)

Same as above but in this case the background with index ind is replaced. The
function returns whether it is successful. When the background is currently visible
in the room it wil be replaced aso.

background_del et e(i nd) Deletes the background from memory, freeing the
memory used. (It can no longer be restored.)

WARNING: When you save the game during playing, added or replaced backgrounds are
NOT stored with the save game. So if you load the saved game later, these might not be
there anymore. Also there are some copyright issues with distributing gif files with your
(commercial) application. So better don't use these.

354 Paths
The following functions will give you information about a path:

pat h_exi st s(i nd) Returnswhether a path with the given index exists.

pat h_get _nane(ind) Returnsthe name of the path with the given index.

pat h_get | engt h(i nd) Returnsthe length of the path with the given index.

pat h_get ki nd(ind) Returns the kind of connections of the path with the
given index (O=straight, 1=smooth).

pat h_get end(i nd) Returns what happens at the end of the path with the given
index (O=stop, 1=jump to start, 2=connect to start, 3=reverse, 4=continue).

35.5 Scripts

The following functions will give you information about a script:

scri pt_exi sts(ind) Returnswhether a script with the given index exists.
scri pt _get _name(i nd) Returnsthe name of the script with the given index.

132

script_get _text(ind) Returns the text string of the script with the given
index.

35.6 Data Files
The following functions will give you information about a data file:

dat afi | e_exi sts(ind) Returnswhether adatafile with the given index exists.
dat afi |l e_get _nane(ind) Returns the name of the data file with the given

index.
datafile _get filenane(ind) Returnsthe file name of the data file with the
given index.

The following functions can be used if you did not automatically export the data file on
game start.

dat afil e_export (ind, fname) Exportsthe datafile to the given file name (if
you did not already do that default on startup).
datafile_discard(ind) Freestheinterrally stored datafor the datafile.

35.7 Objects
The following functions will give you information about an object:

obj ect _exi st s(ind) Returns whether an object with the given index exists.
obj ect _get _nane(i nd) Returnsthe name of the object with the given index.
obj ect _get_sprite(ind) Returnstheindex of the default sprite of the object
with the given index.

obj ect _get_solid(ind) Returns whether the object with the given index is
default solid.

obj ect _get _vi si bl e(i nd) Returns whether the object with the given index is
default visible.

obj ect _get dept h(i nd) Returnsthe depth of the object with the given index.
obj ect _get _persistent(ind) Returns whether the object with the given
index is persistent.

obj ect _get _mask(i nd) Returns the index of the mask of the object with the
given index (-1 if is has no special mask).

obj ect _get _parent (i nd) Returnsindex of the parent object of object ind (-1
if it has no parent).

obj ect _i s_ancestor (indl,ind2) Returnswhether object ind2 isan ancestor
of object indl.

35.8 Rooms
The following functions will give you information about a room:

133

room exi st s(i nd) Returns whether a room with the given index exists.
room get _nane(i nd) Returns the name of the room with the given index

Note that because rooms change during the playing of the room there are other routines to
change the contents of the current room.

134

Chapter 36 GML: Files, registry, and executing
programs

In more advanced games you probably want to read data from afile that you provide with
the game. For example, you could make a file that describes at what moments certain
things should happen. Also you probably want to save information for the next time the
game s run (for example, the current room). The following functions exist for this:

file_exists(fnane) Returns whether the file with the given name exists
(true) or not (false).
file_del ete(fname) Deetesthe filewith the given name.
file_renanme(ol dnane, newnane) Renames the file with name oldname into
newname.
file_copy(fnanme, newnane) Copies the file fname to the newname.
file_open_read(fnane) Openstheindicated file for reading.
file_open_wite(fnanme) Opens the indicated file for writing, creating it if it
does not exist.
file_open_append(fnanme) Opens the indicated file for appending data at the
end, creating it if it does not exist.
file_close() Closesthe current file (don't forget to call this!).
file_ wite_string(str) Writesthe string to the currently open file.
file_wite_real (x) Writethereal vaue to the currently open file.
file_witel n() Writeanewline character to the file.
file read_string() Reads a dtring from the file and returns this string. A
string ends at the end of line.
file_read_real () Readsarea value from the file and returns this value.
file_readl n() Skipsthe rest of the linein the file and starts at the start of the
next line.
file_eof () Returnswhether we reached the end of the file.
di rect ory_exi st s(dnane) Returns whether the indicated directory does exist.
directory_create(dnane)Created a directory with the given name
(including the path towards it) if it does not exist.
file find_first(mask, attr) Returnsthe name of the first file that satisfies
the mask and the attributes. If no such file exists, the empty string is returned. The
mask can contain a path and can contain wildchars, for example ‘ C\temp*.doc’.
The attributes give the additional files you want to see. (So the normal files are
always returned when they satisfy the mask.) You can ad up the following
constant s to see the type of files you want:

fa_readonl y read-only files

f a_hi dden hidden files

fa_sysfil e systemfiles

fa_vol unei d volume-id files

fa_di rect ory directoris

fa_ar chi ve archived files

135

file find_next() Returns the name of the next file that satisfies the
previously given mask and the attributes. If no such file exists, the empty string is
returned.

file find_close() Must be called after handling al files to free memory.
file_ attributes(fnane, attr) Returnswhether the file has al the attributes
given in attr. Use a combination of the constants indicated above.

If the player has checked secure mode in his preferences, for a number of these routines,
you are not allowed to specify a path, and only files in the application folder can e.g. be
written.

The following three read-only variables can be useful:

gane_i d* Unique identifier for the game. You can use this if you need a unique
file name.

wor ki ng_di rect or y* Working directory for the game. (Not including the final
backslash.)

tenp_di rect ory* Temporary directory created for the game. You can store
temporary files here. They will be removed at the end of the game.

In certain situations you might want to give players the possibility to give command line
arguments to the game they are running (for example to create cheats or special modes).
To get these arguments you can use the following two routines.

par anet er _count () Returns the number of command-line parameters (note
that the name of the program itself is one of them.

paraneter _string(n) Returns command-line parameters n. The first
parameter has index 0. This is the name of the program.

If you want to store a small amount of information between runs of the game there is a
simpler mechanism than using a file. You can use the registry. The registry is a large
database that Windows maintains to keep track of all sorts of settings for programs. An
entry has a name, and a value. You can use both string and real values. The following
functions exist:

registry wite_string(nane,str) Creates an entry in the registry with
the given name and string value.

regi stry_ wite_real (name, x) Creates an entry in the registry with the
given name and real value.

regi stry read_string(nanme) Returns the string that the given name holds.
(The name must exist. otherwise an empty string is returned.)

regi stry_read_real (nane) Returnsthe rea that the given name holds. (The
name must exist. Otherwise the number O is returned.)

regi stry_exi sts(nanme) Returnswhether the given name exists.

136

Actually, values in the registry are grouped into keys. The above routines al work on
values within the key that is especially created for your game. Y our program can use this
to obtain certain information about the system the game is running on. You can aso read
values in other keys. You can write them also but be very careful. YOU EASILY
DESTROY YOUR SYSTEM this way. (Write is not alowed in secure mode.) Note that
keys are again placed in groups. The following routines default work on the group
HKEY_CURRENT_USER. But you can change the root group. So, for example, if you
want to find out the current temp dir, use

path = registry_read_string_ext('/Environment',' TEMP);
The following functions exist.

registry_wite_string_ext(key, nanme, str) Creates an entry in the key
in the registry with the given name and string value.
registry_wite_real _ext(key, nane, x) Creates an entry in the key in the
registry with the given name and real vaue.
registry _read_string_ext(key, nane) Returns the string that the given
name in the indicated key holds. (The name must exist. otherwise an empty string
isreturned.)
regi stry _read_real _ext(key, nane) Returns the rea that the given name
in the indicated key holds. (The name must exist. Otherwise the number O is
returned.)
regi stry_exists_ext (key, nanme) Returns whether the given name exists in
the given key.
regi stry set _root(root) Sets the root for the other routines. Use the
following values:

0= HKEY_CURRENT_USER

1= HKEY_LOCAL_MACHINE

2= HKEY_CLASSES ROOT

3= HKEY_USERS

Game Maker also has the possibility to start external programs. There are two functions
available for this: execute program and execute shell. The function execute program
starts a program, possibly with some arguments. It can wait for the program to finish
(pausing the game) or continue the game. The function execute shell opens a file. This
can be any file for which some association is defined, e.g. an html-file, a word file, etc.
Or it can be a program. It cannot wait for completion so the game will continue.

execut e_progran(prog, arg, wai t) Execute program prog with arguments

arg. wait indicates whether to wait for finishing.

execut e_shel | (prog, arg) Executes the program (or file) in the shell.

Both functions will not work if the player set the secure mode in the preferences. Y ou can
check this using the read-only variable:

137

secur e_node* Whether the game is running in secure mode.

138

Chapter 37 GML: Multiplayer games

Playing games against the computer is fun. But playing games against other human
players can be even more fun. It is also relatively easy to make such games because you
don't have to implement complicated computer opponert Al. You can of course sit with
two players behind the same monitor and use different keys or other input devices, but it
is a lot more interesting when each player can sit behind his own computer. Or even
better, one player sits on the other side of the ocean. Game Maker has multiplayer
support. Please redlize that creating effective multiplayer games that synchronize well
and have no latency is a difficult task. This chapter gives a brief description of the
possibilities. On the website atutoria is available with more information.

37.1 Setting up aconnection

For two computer to communicate they will need some connection protocol. Like most
games, Game Maker offers four different types of connections: IPX, TCP/IP, Modem,
and Seria. The IPX connection (to be more precise, it is a protocol) works amost
completely transparent. It can be used to play games with other people on the same local
area network. It needs to be installed on your computer to be used. (If it does not work,
consult the documentation of Windows. Or go to the Network item in the control panel of
Windows and add the IPX protocol.) TCP/IP is the internet protocol. It can be used to
play with other players anywhere on the internet, assuming you know their IP address.
On alocal network you can use it without providing addresses. A modem connection is
made through the modem. You have to provide some modem setting (an initialization
string and a phone number) to use it. Finally, when using a seria line (a direct connection
between the computers) you need to provide a number of port settings. There are four
GML functions that can be used for initializing these connections:

npl ay_init_i px() initializes an IPX connection.

npl ay_init_tcpip(addr)initidizes a TCP/IP connection. addr is a string
containing the web address or IP address, eg. 'www.gameplay.com' or
'123.123.123.12', possibly followed by a port number (e.g. ':12"). Only when joining a
session (see below) you need to provide an address. On a local area network no
addresses are necessary.

npl ay_init_noden(initstr, phonenr)initidizes a modem connection.
i ni tstr istheinitiaization string for the modem (can be empty). phonenr isastring
that contains the phone number to ring (e.g. '0201234567'). Only when joining a
session (see below) you need to provide a phone number.

npl ay_init_serial (portno, baudrate, stopbits, parity, flow) initiaizes
a seria connection. port no is the port number (1-4). baudr at e is the baudrate to be
used (100-256K). st opbi t s indicates the number of stopbits (0 = 1 bit, 1 = 1.5 bit, 2
= 2 bits). parity indicates the parity (O=none, 1=odd, 2=even, 3=mark). And f I ow
indicates the type of flow control (O=none, 1=xon/xoff, 2=rts, 3=dtr, 4=rts and dtr).
Returns whether successful. A typica call is mplay_init_serial(1,57600,0,0,4). Give 0
as afirst argument to open a dialog for the user to change the settings.

139

Your game should call one of these functions exactly once. All functions report whether
they were successful. They are not successful if the particular protocol is not installed or
supported by your machine. To check whether there is a successful connection available
you can use the following function

npl ay_connect _st at us() returns the status of the current connection. 0 = no
connection, 1 = IPX connection, 2 = TCP/IP connection, 3 = modem connection, and
4 = serid connection.

To end the connection call

npl ay_end() ends the current connection.

When using a TCP/IP connection you might want to tell the person you want to play the
game with what the ip address of your computer is. The following function helps you
here:

npl ay_i paddr ess() returns the IP address of your machine (e.g. '123.123.123.12")
as astring. You can e.g. display this somewhere on the screen. Note that this routine
issow so don't cal it al the time.

37.2 Creating and joining sessions

When you connect to a network, there can be multiple games happening on the same
network. We call these sessions. These different sessions can correspond to different
games or to the same game. A game must uniquely identify itself on the network.
Fortunately, Game Maker does this for you. The only thing you have to know is that
when you change the game id in the options form this identification changes. In this way
you can avoid that people with old versions of your game will play against people with
new versions.

If you want to start a new multiplayer game you need to create a new session. For this
you can use the following routine:

npl ay_sessi on_cr eat e(sesnane, pl aynunb, pl ayer nane) creates a new
session on the current connection. sesnane is a string indicating the name of the
session. pl aynunb is a number that indicates the maxima number of players
allowed in this game (use O for an arbitrary number). pl aynane is the name of
you as player. Returns whether successful.

One instance of the game must create the session. The other instance(s) of the game
should join this session. This is dightly more complicated. You first need to look what
sessions are available and then choose the one to join. There are three routines important
for this:

npl ay_sessi on_fi nd() searches for all sessions that still accept players and
returns the number of sessions found.

140

npl ay_sessi on_nane(nunb) returns the name of session number nunmb (0 is
the first session). This routine can only be called after calling the previous routine.
npl ay_sessi on_j oi n(nunb, pl ayer nane) makes you join sesson number
nurmb (O isthe first session). pl ayer nane is the name of you as a player. Returns
whether successful.

There is one more routine that can change the session mode. Should be called before
creating a session:

npl ay_sessi on_node(nove) sets whether or not to move the session host to
another computer when the host ends. nmove should either be true or false (the
default).

To check the status of the current session you can use the following function

npl ay_sessi on_st at us() returns the status of the current session. 0 = no
session, 1 = created session, 2 = joined session.

A player can stop a session using the following routine:
npl ay_sessi on_end() ends the session for this player.

37.3 Players

Each instance of the game that joins a session is a player. As indicated above, players
have names. There are three routines that deal with players.

npl ay_pl ayer _find() searches for al players in the current sesson and
returns the number of players found.

npl ay_pl ayer _name(nunb) returns the name of player number nurmb (O is the
first player, which is always yourself). This routine can only be called after calling
the previous routine.

npl ay_pl ayer _i d(nunb) returns the unique id of player number numb (0 isthe
first player, which is always yourself). This routine can only be called after calling
the first routine. This id is used in sending and receiving messages to and from
individual players.

37.4 Shared data

Shared data communication is probably the easiest way to synchronize the game. All
communication is shielded from you. There is a set of 10000 values that are common to
all entities of the game. Each entity can set values and read values. Game Maker makes
sure that each entity sees the same values. A value can either be areal or a string. There
arejust two routines:

npl ay_data_write(ind, val)write vaue val (string or rea) into location
i nd (i nd between 0 and 10000).

141

npl ay_dat a_r ead(i nd) returns the value in location i nd (i nd between 0 and
10000). Initialy al values are 0.

To synchronize the data on the different machines you can either use a guaranteed mode
that makes sure that the change arrives on the other machine (but which is low) or non
guaranteed. To change this use the following routine:

npl ay_dat a_node(guar) setswhether or not to use guaranteed transmission for
shared data. guar should either be true (the default) or false.

37.5 Messages

The second communication mechanism that Game Maker supports is the sending and
recelving of messages. A player can send messages to one or al other players. Players
can see whether messages have arrived and take action accordingly. Messages can be sent
in a guaranteed mode in which you are sure they arrive (but this can be slow) or in a non
guararteed mode, which is faster.

The following messaging routines exist:

npl ay_nessage_send(pl ayer, i d, val) sends a message to the indicated
player (either an identifier or a name; use 0 to send the message to al players).i d
is an integer message identifier and val isthe value (either areal or astring). The
message is sent in non-guaranteed mode.

npl ay_nessage_send_guar ant eed(pl ayer, i d, val) sends a message to
the indicated player (either an identifier or a name; use 0 to send the message to
al players). i d is an integer message identifier and val is the vaue (either a real
or astring). Thisis a guaranteed send.

npl ay_nessage_recei ve(pl ayer) receives the next message from the
message queue that came from the indicated player (either an identifier or a
name). Use O for messages from any player. The routine returns whether there
was indeed a new message. If so you can use the following routines to get its
contents:

npl ay_message_i d() Returnsthe identifier of the last received message.

npl ay_nessage_val ue() Returnsthe value of the last received message.

npl ay_nessage_pl ayer () Returns the player that sent the last received
message.

npl ay_nessage_nane() Returns the name of the player that sent the last
received message.

npl ay_nessage_count (pl ayer) Returns the number of messages left in the
gueue from the player (use O to count all message).

npl ay_nessage_cl ear (pl ayer) Removes al messages l€eft in the queue from
the player (use O to remove all message).

A few remarks are in place here. First of al, if you want to send a message to a particular
player only, you will need to know the players unique id. As indicated earlier you can

142

obtain this with the function npl ay_pl ayer _i d(). This player identifier is also used
when recelving messages from a particular player. Alternatively, you can give the name
of the player as a string. If multiple players have the same name, only the first will get the

message.

Secondly, you might wonder why each message has an integer identifier. The reason is
that this helps your application to send different types of messages. The receiver can
check the type of message using the id and take appropriate actions. (Because messages
are not guaranteed to arrive, sending id and vaue in different messages would cause
serious problems.)

143

Chapter 38 GML: Using DLL's

In those cases were the functionality of GML is not enough for your wishes, you can
actually extend the possibilities by using plug-ins. A plug-in comesin the form of aDLL
file (a Dynamic Link Library). In such a DLL file you can define functions. Such
functions can be programmed in any programming language that supports the creation of
DLL's (e.g. Delphi, Visual C++, etc.) You will though need to have some programming
skill to do this. Plug-in functions must have a specific format. They can have between O
and 12 arguments, each of which can either be a real number @ouble in C) or a null-
terminated string. (For more than 4 arguments, only real arguments are supported at the
moment.) They must return either area or a null-terminated string.

In Delphi you create a DLL by first choosing New from the File menu and then choosing
DLL. Here is an example of a DLL you can use with Game Maker written in Delphi.
(Note that thisis Delphi code, not GML code!)

l'ibrary MyDLL;

uses SysUtils, Classes;

function MM n(x,y:real):real; cdecl;
begin

if x<y then Result := x else Result :=y;
end;

var res : array[0..1024] of char;

function Doubl eString(str:PChar): PChar; cdecl;
begin

Str Copy(res,str);

StrCat(res,str);

Result := res;
end;

exports MyM n, Doubl eStri ng;

begin
end.

This DLL defines two functions:. MyM n that takes two real arguments and returns the
minimum of the two, and Doubl eSt ri ng that doubles the string. Note that you have to
be careful with memory management. That is why | declared the resulting string global.
Also notice the use of the cdecl calling convention. You can either use cdecl or stdcall
calling conventions. Once you build the DLL in Delphi you will get a file MyDLL. DLL.
This file must be placed in the running directory of your game. (Or any other place where
windows can find it.) You can also use a data file resource to store the DLL inside the
game.

144

To use this DLL in Game Maker you first need to specify the external functions you want
to use and what type of arguments they take. For this there is the following functionin
GML.:

external _define(dll, nane, cal |l type, restype, argnunb, ar glt ype, a
rg2type, ..) Definesan external function. dl | isthe name of the dll file. nane
is the name of the functions. cal | t ype is the caling convention used. For this
use either dl | _cdecl or dl | _stdcall . restype isthe type of the result. For
thisuse either ty_real or ty_string. argnunb isthe number of arguments
(0-12). Next, for each argument you must specify its type. For this again use
either ty_real or ty_string. When there are more than 4 arguments all of
them must be of typety real .

This function returns the id of the external function that must be used for calling it. So in
the above example, at the start of the game you would use the following GML code:

{
gl obal . ntm = ext ernal _define(' MYOMAN. DLL' ," M\yM n' , dl | _dcecl

ty real,2,ty real,ty real);
gl obal . ddd = external _define(' MYOAN. DLL' , ' Doubl eString',dl | _dcecl
ty_string,1,ty_string);
}

Now whenever you need to call the functions, you use the following function:

external _call (id,argl, arg2,.) Cdlsthe externa function with the given
id, and the given arguments. You need to provide the correct number of
arguments of the correct type (real or string). The function returns the result of the
external function.

So, for example, you would write:

{

aaa
SSS

external _call (gl obal.mm x,y);
external _call (gl obal.ddd, Hello');

}

You might wander how to make a function in a DLL that does something in the game.
For example, you might want to create a DLL that adds instances of objects to your
game. The easiest way is to let your DLL function return a string that contains a piece of
GML code. This string that contains the piece of GML can be executed using the GML
function

execut e_string(str) Executethe piece of code in the string str.

Alternatively you can let the DLL create a file with a script that can be execute (this
function can aso be used to later modify the behavior of a game).

145

execut e_fil e(fnane) Executethe piece of codein thefile.

Now you can call an external function and then execute the resulting string, e.g. as
follows:

{

ccc = external _call (gl obal.ddd, x,y);
execute_string(ccc);

}

In some rare cases your DLL might need to know the handle of the main graphics
window for the game. This can be obtained with the following function and can then be
passed to the DLL.:

wi ndow_handl e() Returns the window handle for the main window.

Note that DLLs cannot be used in secure mode.

Using external DLLs is an extremely powerful function. But please only use it if you
know what you are doing.

146

