Tutorial: Creating Platform Games

Copyright 2003, Mark Overmars
Last changed: March 30, 2003
Uses: version 5.0, advanced mode
Level: Intermediate

Platform games are very common, in particular on devices like the Game Boy. In a platform game
you look at the scene from the side. The player normally controls a character that walks around in
the world. Thisworld consists of platforms. The player can walk on these platforms, jJump or drop
from one platform to the other, use ladders or ropes to get to different places, etc. On the platforms
there are objects to collect, enemies to avoid or kill (often either by shooting them or by jumping on
top of them), switches to press to open passages, etc. Also the player normally requires skill to jump
over dangerous areas In some platform games you see the whole level a once, but in most you see
only a part around the character. In such a case, finding your way around becomes an additional
challenge.

Creating a good platform game is not trivial, aso not with Game Make . There are three important
aspects:

Creating a natural motion for the character.

Creating enough variation in monsters, background, etc.

Carefully designing the levels such that they are fun to play and get increasingly difficult.

In this tutorial 1 wil give some advice and tricks about how to create platform games using Game
Maker . The tutorial is accompanied by a number of demo games. These are not full games. They
consist of just one level to demonstrate some particular aspect. Y ou can use them as abasis for your
own platform games.

The basics

We start with the most simple platform game. You can find it in thefile pl at f orm 1. gnd.In
each platform game there are two basic objects: the character that iscontrolled by the player, and a
block object that is used for the floors (platforms) the player can walk on. The same block is often
used for the walls that the player cannot pass. We need two sprites: one for the character and one for
the block. For the character we use a simple ball. For the block w e use a (non-transparent) black
square. We create two objects. The block object is simply a solid object that has no events or
actions. It simply sits there. The character object is alot more complicated.

Motion

The crucial aspect we treat in this first section is how to define the motion of the character. The
problem is that the character must walk on top of the floors. It must not intersect the floor. If the
character jumps or falls off a platform it must land correctly on the next platform. There are a
number of different ways in which the character can walk, jump, and fall. Different platform games
use different modes. Normally we just use three keys to control the motion. The |eft arrow key
should move the character to the left, the right arrow key should move it to the right, and the up key
or the space key makes it jump.

Let usfirst consider the left and right motion. The first choice to make it whether the player can
only change its direction of motion while on a platform or aso in the air while jumping or faling.
Even though the second option is not natural (it is rather difficult to start moving left while you are
faling down) we decide to go for the first option, that is, we alow horizontal motion wherever the
character is. Thistendsto lead to nicer game play and is actually also easier to implement.

The second choice is whether the motion has constant speed or whether it accelerates when you
keep the key pressed. For simplicity reasons we opt for the first choice. Allowing for acceleration

though normally gives nicer game play: the player must for example start a run at a distance to jump
over awide hole.

As you should know there are differently ways to let a character move. We can set a speed of
motion or we can simply move the character directly. In platform games it is normally the easiest to
let the vertical motion be done automatically (as we will see below) but to do the horizontal maotion
ourselves. Thisisrather easy. In the keyboard event for the left arrow key we check whether the
position at relative position (-4,0) is free. If so we let the character jump to that position. We treat
the right arrow key in asimilar way. See the enclosed example game.

Jumping

Next we need the vertical motion. This is more difficult. To let the character fall down we can use
gravity. But it should stop moving when we hit the floor. Also, you normally want a maximal
faling speed, otherwise the character will move too fast. (This is both not very pleasing but it can
also cause problems in the implementation. E.g. the character might fall through a floor if it moves
too fast.) To solve this problem, in the step event of the character we check whether the position
just below the character is collision free. If so, the character isin the air and we set the gravity.
Otherwise we set it to 0. We also check the variable vs peed which indicates the vertical speed. If
itislarger to 12 we set it back to 12. In this way we limit the vertical speed to 12. So the event
looks something like this:

o] Object Properties

Marne:]character Ewvents: Achions: Code

G A G
S pribe: W = : ! . .
| . Hik If a position iz collision free Wariables
[Solid i <Left>
Il & cps Set the gravity
[v “isible : ﬁ
@ <Right> @ Else

Diepth:]EI Other

Set the gravity
&+
[~ Persiztent i\,

B Lind e wertiodf seead
Barent: |<na parent> = If vspeed iz larger than 12
Mask: |czame as sprites ,-_% Set variable vspeed to 12

@) Show |nformation | Add Event |

Delete | Ehange|

Next we have to land correctly on the floor. This is more difficult than it might seem. It will happen
when the character collides with the block object. In this collision event we should set the vertical
motion to 0. But this might leave the character hanging a lat in the air above the ground. (The
reason is that the character is placed back to its previous position before the collision.) To this end
we want to move the character to the exact point where the collision occurs. Fortunately there is
action for this in Game Maker :

spon 240DS l AEID l |D4IaD l FuER W l L L [a0l

Moveto contact position

With this action you can move the instance in a given direction until a contact position with
an object is reached. If there already is a collision at the current position the instance is not
moved. Otherwise, the instance is placed just before a collision occurs. You can specify the

direction but also a maxima distance to move. You can aso indicate whether to consider
solid object only or al objects.

We use this action. As direction we indicate the variable direction which is the current direction of
motion of the instance. As amaximal distance we specify 12 (although thisis not really necessary
here):

Move to contact position
i~ Appliez to
f+ Self

" Other
" Object:

direction:

MAEILIT; |1 2

againzt;]Sl:ulid ohjects éL

w OK % Cancel

So the total collision event with the block looks as follows:

@) Object Properties

Mame; Jcharacter Events: Actions: Code

_ %% Step 2 | Move to contact in direction direu:tiu:ung
e bl = Set the vertical speed | ~Variables
[Sl:l_hlj @ <Lefty

n <Upe
¥ Wisible & < o]
%@ <Right>
Depth: JD Other
[Persiztent ﬁ
Parent: |<no parent: 15!3

Mask: |csame as sprite: Eﬂa

@) Show Information | Add Event |

Delete | Ehange‘

Y ou could argue that we should only do this when we hit a floor below us. But actually we aso
want to move to the contact position if we hit a floor from below or if we hit awall from the side.
There is one important thing here that is often a cause for problems: We assume that the character at
its previous position is indeed collision free. Y ou would expect this but this is not always the case.

A mistake that is often made is that when the character has an animated image, aso the collision
mask changesin every step. This could mean that the new image at the previous location still causes

apog 24033 [M [(043U l ZUE L l T l aa0l

acollison. So you better make sure that the character has one collision mask (see aso in the next
section).

Finally we have to let the character jump when the up arrow key is pressed. But this must only
happen when the character is currently on the floor. So we first test whether the position below the
character creates a collision and, if so, set the vertical speed e.g. to -10. Y ou might have to play a bit
with the vale of 10 for the vertical speed and the vaue of 0.5 for the gravity to get the motion you
want.

Now the basis for the platform game is ready. Design alevel with some floors and walls,
constructed from instances of the block object. Place an instance of the character in the room and
you are done.

Better graphics

The basic platform game we created in the previous section works but it looks rather bad. There are
two aspects we want to change: the way the player looks, and the way the background looks. The
adapted game can be found in the file pl at f or m 2. gnd.

The character images

Let's start with the character graphics. We will use two different (nontanimated) sprites. one for the
character facing to the left and one for the character facing to the right. The easiest now is to place
inthe event for the left arrow key an action to change the sprite to the one facing left. Similar, in the
right arrow key you switch to the one with the character facing right. It is very important that you
switch off precise collision checking for the two sprites. There are a number of reasons for this.
Firgt of all, it avoid that the sprite get stuck halfway down the edge of the platform. Secondly, when
the sprite is changed from left facing to right facing they should use the same collision mask
otherwise the character might get stuck. The same is even more important when using animated
sprites. For the same reason you better make sure that the bounding boxes of the sprites are the
same. Y ou can aways use manua bounding boxes for this. So when adding the sprites the settings
should be something like this:

~] Sprite Properties

Mame: |sprite_right [~ Precize collision checking V
[v Usze video memary
% Load Sprite |
[Load only on use
Width: 32 Height: 32 Drigin
MNurnber of subimages: 1 Y ID— v ID_
Bounding Box
Vers ; " Automnatic
2 Eellt ke | " Fullimage
v Trarsparent * Manual
Left|7 Right |23
Top|2 Bottom |31

In more advanced games you will probably want to use animated sprites. In this case you aso need
a sprite for the character when it is not moving. Also you might want to add sprites for the character
jumping, falling, shooting, etc. In this case you will have to change the sprite at various placesin
the events. In particular, in the no key event you probably want to set the sprite to the no moving
one. Alternatively, you can draw the correct sprite in the drawing event based on the situation. For
example, you can check whether xprevious<x to find out whether the character has moved to the

right. As | indicated before, better make sure that all sprites have the same bounding box and no
precise collision checking.

The platforms and walls

Secondly we want to improve the background and the platforms. Here we use a standard technique.
Rather than using objects for al the different wall and floor elements, we use so-called tiles. Tiles
are pieces of background images that are drawn at particular places in the room. They do not have
associated events nor do they create collision. The good part is that they are fast and use little
memory. So you can create large rooms without the need for large images.

To add tiles to your rooms you first need a background image that contains the tiles. Tilesin a
background image preferably have a fixed size and have alittle (£ pixel) border between them such
that they can easily be separated. For our simple platform game we made our ownwhich is
included. We added it as a transparent background resource named background_til es.

=] Background Properties E][EI g|

M arme: Jbackgru:uund_tiles

jr Load Background | 1.'..' ;

widtt 134 Height: 134 | R 0 £
[w Transparent =
=l

o Edit Background |

v lze video mermaory

[Load only on use

Now, when creating aroom, you can click on the Tiles tab page. You can select the tile set (that s,
the appropriate background resource) and you might have to indicate the tile width, height, and
separator size. Now you can draw tiles by clicking on the appropriate tile and next placing them in
the room, like you would do for objects. The right mouse button deletes tiles. Use your imagination
to create challenging rooms. (Note that you can also place foreground tiles. These will awaysliein
front of the moving characters. We will not use them here but they are great for giving a better 3D
effect.)

[= Room Properties

backgrounds] wiews] Y e | . ;]
objects] settings ot et]

E e Lad

[Eoreground tiles

{background_tiles = 3

[v Delete underlying

width [16 height [15 |
Hzep "1— Wsep ’1— 2

|| Clear J o Shift I ; ;
2 | B
] w96 tileset: background_tiles id: 10000007

There is a problem left though. As indicated above, tiles are just nice graphics. They do not generate
events or collisions. So the character would fall straight through them. To avoid this we still need
the block objects we had before. We place the block objects at the appropriate places on top of the
walls and platforms you did create with the tiles on the background. Now by making the block
objects invisible you will not see the black blocks but the beautiful tiles. But the block objects are
actually there, so the character cannot pass through the walls and will land on the platforms.

[Room Properties

-

Igackg_r_ounds] WIBWE] 7 i _ _]
o setings | files] Tl =t = R
; :
gLl L]l
L |
. - P |
Object to add with left mouse;
block = [|
[v Delete underlying ’ i B
| u &
[Clear J = Shift I | |
; . |
Sork by = J Sort by I
L] .-......-.-=\...I- i‘
»

4] |
« 0K -
w80 vi 464 | object: block id: 101017

There might be one problem here. The 16x16 block objects might be too large to cover the
background nicely. So we want to make a few other block objects of size 16x8 and 8x16. Again we

make them solid. To avoid having to specify collision events with these as well, we use the parent

mechanism. Thisis a very powerful mechanism that you should learn to use. If an object A isa
parent of object B, B behaves as a specia case of A. It inherits al the behavior of A (unless you
overwrite this with other behavior). Also, collisions with B are treated the same as collisions with
A. So for the smaller blocks we set the parent to the bigger block. In this way they will be treated
the same as the bigger block.

Threats and treats

Just jJumping around from platform to platform is rather boring. Y ou definitely need some more
challenges and goals. In this section we treat a number of these. Check out the game
pl at f orm 3. gnd for the result.

Monsters

Let usfirst add some monsters. We will make two monsters, one that moves left and right on a

platform and the other that flies left and right in the sky. Jumping on top of it can squash the first
one; the second one should be avoided at all times.

Let's start with the monster that moves on the platforms. We need two sprites for it, one with the
monster facing left and the other with the monster facing right. Again, better don’t use precise
collision checking for the same reasons as indicated above and pick some relevant bounding box.
Now we create the monster object. In the creation event we let it move to the right with a particular
speed. Whenever it hits awall it reverses its horizontal speed. To set the correct sprite for the
monster we use the end step event. This event happens just before the instances are drawn. In it we

set the correct sprite based on the value of the variable hs peed that indicates the horizontal speed.

0 Object Properties E@FE

Marne:]mnnster Ewents: Actions: Obijects

&
. y Create If hepeed iz larger than 0
Spriter Jsprite_manster Sl

Iil Change sprite into sprite_monsterr
: Kk . block
[~ Solid . El
k_ ELZE kot] E
v “isible re . =t [s
I |z| Change zprite into sprite_monsterl s
Diepth: 10
[~ Persistent
Parent: W Eﬂa
Roomsz
Mask: |czame as sprites .-_1,!a

@) Show [nformation | #dd Event |
[elete | Change |

To avoid monsters from falling off platforms, we introduce another object, which we call a marker.
This marker will be an invisible red block. Whenever a monster touchesiit, it reverses its
orientation. Having invisible markers is a good generd trick to let instances perform certain actions
at particular places in your room. Besides changing direction you could use markers to shoat, to lay
bombs, etc.

l apng [24008 l AREIRD l (04U l zu!el.u| U BAOU

When the character hits a monster the monster or the character should die. But actualy, asin most
platform games we like to make it possible for the character to jump on top of the monster and
sguash it. So in the collision event of the character with the monster we must check whether we hit
the monster from above to squash it. To find out we perform the following test:

vspeed > 0 & & y < other.y+8

Itistrueif vspeed islarger than 0, so the character moves downwads, and the character is close
to the top of the mongter o it is indeed hitting it from above In this case the monster must be
destroyed. (In the example we turn the monster into a flat dead monster, which destroys itself after a
while. This gives a nica graphical effect.) In this smple platform game, dying for the character
corresponds to restarting the level, which can be achieved by some simple actions.

The flying monster is even easier. We proceed in exactly the same way. Only, in the collision event
of the character with the flying monster, no test needs to be performed because you cannot squash a
flying object.

Y ou might want to add some more monsters, e.g. with different speeds, to make things harder. You
can also make a monster or rock that fdls down or moves up and down. Just use your own
imagination.

Pits

Most platform games require careful timing of jump to avoid faling into pits. Falling into a pit
normally kills the character. To this end, we add a new object, called death. This object sared
block that again is not visible. You can place it at the bottom of the pit. (In the tiled room you can
put some spikes there.) In the collision event of the character with the death object it should play a

sound, wait awhile, and restart the room. Y ou can aso make pits that go down infinitely. In this
case you want to add similar actions in the outside event (in the other events) of the character,

maybe including a test the y > room_height to make sure the character fell down, rather than
jumped W outside the playing field.

Collecting points

Most platform games have some mechanism in which the player can collect points. Normally you
have to pick up certain objects or catch certain things. In our example the player can collect
mushrooms. So we make a mushroom object. To give a bit of variation, the mushroom sprite
contains 10 different mushrooms. The mushroom object picks one at random upon creation. To this
end we set the variablei mage_si ngl etorandon{ 10) .i nage_si ngl e indicates which of
the subimages must be shown (if it is -1, which is default, Game Maker cycles through the
subimages to show them as an animation). r andom(10) isafunction. It will return arandom
number below the argument given (so below 10 in our case). In the collision event d the character
with the mushroom object we play a sound, destroy the other object (that is, the mushroom) and add
10 to the score.

In some platform games, collecting things has a more important function than just raising your
score. For example, you might get an extra life when you collect enough objects. Also there might
be objects that restore your health (assuming monsters don't kill you but simply weaken you), make
you move faster, jump higher, etc.

Next level

Of course there should be away to finish alevel, such that the player can move on to the next level.
Tothisend, wecreateal evel exi t object. When the character gets there you are moved to the
next level. In the example thisis done rather simple. We add atest action to see whether the next
room exists. If thistest is true we move to the next room. Otherwise we the highscore list is shown
and the game is restarted.

Y ou might choose to make the level exit only appear when for example al mushrooms have been
collected. To thisend, in the creation event of thel evel exi t object, move it to a position —100;-

100 (so off the screen). Now in the step event of the object we check whether the number of
mushroom objects is equal to O (thereis an action for this) and, if so, move the object back to its
starting position (again there is an action for this).

More motions

Our current platform game has just some limited motion possibilities. The character can move left
and right, and it can jump. To make things more interesting, let us add some possibilities. The result
can be found in the game pl at f or m 4. gnd.

Ramps

It isniceif the player can walk up sloping ramps (down goes automatically because of the falling).
To this end, we have to replace the code in the left arrow key event. We put there the following:

Rather than just testing whether the position to the left is collision free we also test whether a
position 8 pixels higher is callision free. If so we move the character there and use the landing

action to move it down to the contact position. So the event will look as follows:

o] Object Properties

Mame: Icharacter Events: Actions: Move

ﬁ Step i Izl Change zprite into sprite_left
Sprite: |zprite_right = block
4 [bloc I & position is collision free

™ Solid %%}‘ monster

3| Jump to a given position +
W isible e £ e BT

= riuzhiroam @ Elze
Drepth: |0 Gk ; . ﬁ
I e l—l lervelext If a position iz collision free E .
Jump

[Persistent dh Il death
b mn <Lefts b Start of a block
Parent: W =) ?@ <Ups Jurnp to a given postion
Mask. Im =) & <Hiighit " Mave to contact in direction 270 ==

React

@) Show |nformation | Add Ewvent | S End o a black
Delete | Change | @

The right arrow key is handled in a similar way.

l apoa l aloas l AN l DA l Zui l Lu!em| a0

Ladders

People aways want ladders in platform game along which the character can move from one
platform to the other. This requires a little bit of work. A ladder will be represented by athin
vertical block that isinvisible (the real ladder or vine or whatever that is used for climbing is drawn
again using tiles) and not solid. When the character is not in contact with a ladder motion should be
as before. But when it is in contact with the ladder things must go different. First of al, the
character should not fall down. So in the step event we have to make a change to this effectadding
some actions that set the vertical speed and gravity to O when in contact with aladder. Also we set
the sprite to the climbing sprite in that case.

The second thing that needs to change is the event for the up key. When the character is at aladder,
the up arrow key should move it up, rather than jJump. Again we need afew additional actions for
this. We test whether the character is in contact with aladder and, if so, move it up a bit. We use
similar actions for the down key.

Using aview

Up to now we always showed the entire room. For many platform games this is not what you want.
Instead you want to see only a part of the room, around the character you are controlling. This
makes the game more challenging because the player must try to detect his way through the
platform. Y ou can aso hide prizes at difficult to reach placesin the room.

Fortunately thisis extremely simple to achieve in Game Maker. When designing the room, click on
theViews tab. Click on the checkbox Enable the use of Views to start using views. Select the first
view and check the box Visible when room starts to make sure this view can be seen. Giveit a
width of 300 and a height of 200 (or something else that you like). (As we are going to let the view
follow the character there is no need to specify the left and top position of the view in the room.
Also, because we use just one view, we don't have to specify the x and y position of the view on the
screen.) As the object to follow we choose at the bottom the character. The view will now
automatically move to keep the character in focus. We don’t want the character toget too close to
the border. To this end we set theHbor and Vbor vaues to 64. There will now aways be a 64 pixe
area visible around the character. Finaly, to get a smooth view motion we set the maximal view
speed to 4. (This also gives a very nice effect at the start because the character comes slowly into
view.) So the settings will look as follows:

[= Room Properties

objects] §etting$m_| til

backgrounds

iew 1
iew 2
e 3

ow 4 ol e 00
s % .l W]

v Yizsible when room starts : 3 i J* : ‘...
Left: ilj_ Top: ilj_ u] Bl i
w: [300 H: [z00 2 i
2o ¥
HBor: |54 WBar: IW ii
HSp: |4_ WSp: |4_

Object o follow:

character =) I
i

()4
w0 w144 | object: block id: 100992

Having the view is nice but it makes the window in which things happen rather small. To avoid this,
in the GameOptions we set the scaling to 200 percent. Clearly you can play with these values to
get the effect you want.

-

Some further touches

Shooting monsters

The next step is to enable the player to shoot monsters. To make things a bit more interesting, the
player first needs to find some ammunition to be able to shoot. To this end we need a variable called
amo that indicates how much ammunition the player has. In the creation event of the character we

set this to 0 using the action to set a variable. The ammunition object has a simple sprite and does
nothing. It just waits to be picked up by the player. When the character collides with the
ammunition object we add 10 to the variable ammo (set it relative to 10) and destroy the
ammunition instance.

Next we need a bullet object. When the player presses the <space> key an instance of this object is
created, assuming there is ammunition and the value of the variable anmmo is decreased by 1. So the
space event looks as follows:

E Object Properties E”EJE'
Marrie: W Events: Actions: Code

N mushroom

] |F ammo iz larger than 0
Sprite: | spwite_right & e 57 levelenit

S Create instance of object bullet ia
[Sold i I et . .

b 4 ammurition riable amrmo to -1

v Visible
7 im <Lefty

Depth: [0 i <Up> Other -
[~ Persistent B <Flight> My

& m <Downy
Parent: W Eﬂa

@ Outside Room

Mask: lozame as sprites éﬂa

@) Show Information ‘ Add Event |

Delete ‘ Change|

.

1 spoa AUodE l AR [p:u]uo::u l Zuw I e [anow

But there is one important issue. We like the bullet to shoot in the diredion the character is facing.
We achieve this in the creation event of the bullet. Here we check the value of variable
character. sprite_index. Thisvariable contains the index of the sprite for the character
object. (Because there is just one character indance we can do this.) Based on it we set the direction
of mation to the left or the right. When we are climbing we destroy the bullet. (Shooting while
climbing is not possible.) So this is what the creation event looks like:

9| Object Properties E
Name: [bulet s S |2
Ieate If character.sprite_index is equal to sprite_left 2
Spriter | sprite_bullet pe ' - 3
& i . bloilc Start moving in & direction z
 Solid B - manster B =
3 @ i It character.sprite_index is equal to sprite_right =l
v Visible Wit oAl . g
= 4 Outzide Room Start mowing in a direction Sounds)
Depth: 10 : g Mais
If character.sprite_index is equal to sprite_climbing %
I Persistent Destroy the instance €]
Parent: |<no parent: & =
Fooms z
Mask: |<zame as sprites E_l!; ?
o
@) Show Information ‘ Add Event | il
o
o
«” Ok | Delete ‘ Change | &

It remains to destroy the bullet when it hits awall or when it goes outside the room and to kill the

monster when the bullet hitsit. Thisis al easy. Seethefile pl at f or m 5. gnd for the new
verson of the game.

A score panel

A player now has a score and ammunition. We are also going to give it some lives. Hitting a
monster or faling in apit will cost alife. Thereis an easy mechanism for livesin Game Maker. We
aregoingto createaspecial | i fe_control | er object. It does not need a sprite. In its creation
event it sets the number of livesto 3. Whenever the player dies we decrease the number of lives. In
theNo more livesevent for the controller we show the highscore table and restart the game.

But it would also be nice if we can see the number of lives, the score, ammunition, etc. To thisend
we are going to make a little panel with this information. We are going to draw this in the Draw
event of the controller object. There is though a problem here. Where should we draw it? We cannot
draw it a a fixed place in the room because the view changes and we want the panel awaysin
view. Fortunately we can ask for the position of the view. Thisis indicated by the two variables
view_ | eft andvi ew_t op. So we can draw the panel with the information relative to this. Here
iswhat the draw event of the controller object looks like:

@) Object Properties |Z||E|E|
Mame: [life_controller Events: Actions: Images —

@ Game Start Set the colars @
Sprite; |omo sprite & Mo bare Li ;
@ Mohore Lives E] - - Drawing -

[~ Salid . : E] @
@ Draw the lives as image
v “isible
Draw the value of score
Depth: |0

It character. armma iz larger than 0 Settings
o El Diraw sprite sprite_ammunition .

Parent: |cno parents El
Mazk: |csame as spriter [&ﬂa

@) Show [nformation J Add Event ‘

Delete J EhangeJ

[apoa [am:us| A I0UD3 l Zurw l LW I =Rt

Note that we aso draw an image when the player can shoot. In the game, that can be found in the
filepl at f or m_6. gnd, this result in the following image:

§88 |

Score; 30

What next?

The sections above should have given you a number of the basics of making platform games. Now
it isyour turn. You will have to use these techniques and some more ideas of yourself to create a
real nice platform game. Remember that the most crucial part of platform games is the levels. Start
making levels one by one. Play them until you are happy with them. Every so often, introduce some
new game play aspect. Here are some additional ideas that you can use:

different monsters, e.g. bouncing balls and monsters that shoot

keys that you need to find in order to open doors

mines that you can place somewhere and that go off when a monster (or yourself) steps on
them

water to swim in (this will completely change the motions; no gravity anymore, or amild
upwards gravity until you reach the surface, limited time before you run out of air, air
bubbles to grab, etc.)

walls and floors you can destroy, e.g. by shooting them or jumping on them with force
trampolines that make you jump higher

platforms that appear and disappear

one-way streets

moving platforms (this is not easy!)

Good luck.

